

What About the Waste? Managing the Nuclear Fuel Cycle

Thursday, January 26 6:00 - 7:00 pm EST

What about the waste? Managing the nuclear fuel cycle

Mary Lou Dunzik-Gougar, Ph.D. Idaho State University Idaho National Laboratory

Questions about the nuclear fuel "cycle" and radioactive waste...

What is it?

Where does it come from?

Can we handle it safely?

Radioactive waste

Where is it?

It starts with U

Uranium mining—open pit

Uranium mining—in situ

Uranium milling

1. Ore is crushed

⊗ANS STEM Academy

- 2. Uranium is separated
- 3. U₃O₈ "yellow cake" produced

Uranium conversion (to UF_6 gas)

- Impurities removed
- Uranium combined with fluorine

• UF₆ gas produced

Uranium enrichment

- Natural U is > 99% 238U and only ~ 0.7% 235U
- Separation of 235UF6 and 238UF6 based on (very small) mass

UF₆ enriched from 0.7% ²³⁵U to 3%-5% ²³⁵U

Fuel fabrication

Uranium Oxide Ceramic Fuel Pellets

Fuel rods filled with pellets are grouped into fuel assemblies

Fuel fabrication

A pressurized water reactor fuel assembly

Inside the reactor

Cherenkov radiation glowing in the core of the INL Advanced Test Reactor.

In the reactor, ²³⁵U fissions to produce . . .

Neutrons may

- Cause new fissions to occur
- Be absorbed to form unstable, radioactive nuclide

Fuel consumption in the reactor

- Fuel is in reactor for 4 6 years
- Uranium-235 consumed
- Fission products and transuranics produced

Fresh Fuel

100% uranium dioxide (UO₂)

So, what and where is the waste?

Types of radioactive waste

Low-level waste

- Largest quantity from nuclear power
- Also from medical facilities, industry, research institutions, monitoring labs

Low-level waste disposal

Low-Level Radioactive Waste Disposal

This LLW disposal site accepts waste from States participating in a regional disposal agreement.

 \otimes **ANS** \otimes **T** \in **M** Academy

Low-level waste disposal sites

Four low-level waste disposal facilities:

EDUCATOR TRAINING

- Richland, WA
- Clive, UT
- Barnwell, SC
- Andrews, TX

Transuranic waste

540 ft

850 ft. 1000 ft.

High-level "waste"

Dry cask storage

Waste packaging

⊗ANS STEM Academy

Used nuclear fuel storage

Used fuel first stored in pool at least 5 years

Cooling and shielding

Older fuel can move to dry casks

- Air cools
- Steel and concrete shields

Geologic repository

- The choice of countries worldwide
- U.S. has studied Yucca Mt., Nevada as potential location

100 miles northwest of Las Vegas

Fuel consumption in the reactor

Fresh Fuel

100% uranium dioxide (UO₂)

Fuel recycling/reprocessing

⊗ANS STEM Academy

Reprocessing

World Nuclear Association

Research

Electroplated uranium from pyroprocessing

Sodium cooled fast reactor

Recycling nuclear fuel

- Continuously recycling fuel can reduce spent fuel waste volume by over 95%
- Reduces isolation time from 1000s of years to 100s
- Remaining waste is placed in robust containers designed for safety and shielding

Why not here in the U.S.?

Big picture about spent fuel as waste

Nuclear is the cleanest type of reliable power production, producing the least waste

Spent fuel is very safely managed

For a 1000 MWe plant, annual waste production is...

<u>Wind (0.32 cp)</u> 36,000 tons used turbine blades (assuming other components recycled)

 $\frac{\text{Coal} (0.57 \text{ cp})}{62,500 \text{ tons } SO_2}$ 1050 tons fly ash

 \otimes **ANS** \otimes **T** \in **M** Academy

<u>Nuclear (0.93 cp)</u> 20 tons SNF 175 tons DU 500 m³ LLW

> <u>Solar (0.23 cp)</u> 10,700 tons used panels Leach Cd

Questions?

