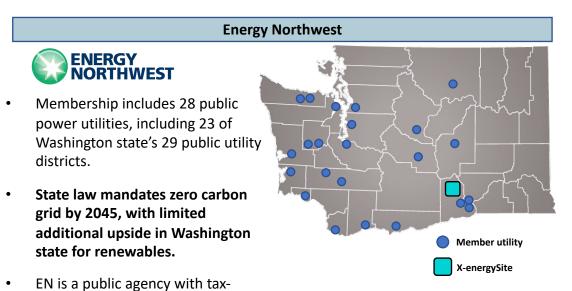


The Makings of a New Energy Era

Environmental Consciousness

Breakthrough Technology

Political Alignment



Unprecedented Convergence

Advanced Reactor Demonstration Program – 2027

Advanced Reactor Demonstration Project

- In May 2020, the Department of Energy announced the Advanced Reactor Demonstration Program (ARDP)
- X-energy and TerraPower were selected as program winners in October 2020
- Program designed as a public-private partnership:
 - Government provides winning bids with 50% cost share for first-ofa-kind advanced nuclear plant
 - o Plant must be <u>commercial</u> (not demonstration)
 - ✓ Government motive? Kick-start advanced nuclear industry
- X-energy partnered with Energy Northwest, a top-tier customer
- ARDP supports a 320MW plant (4 modules), plus a TRISO fuel manufacturing facility

2021	2022	2023	2024	2025	2026
J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D

Final Design – Detailed Design

Pre-Application NRC Licensing Review

NRC Licensing Review

Site Pre-Construction Activities

Unit 1: Construction Begins

Unit 2: Construction Begins

advantaged capital access.

Unit 3: Construction Begins

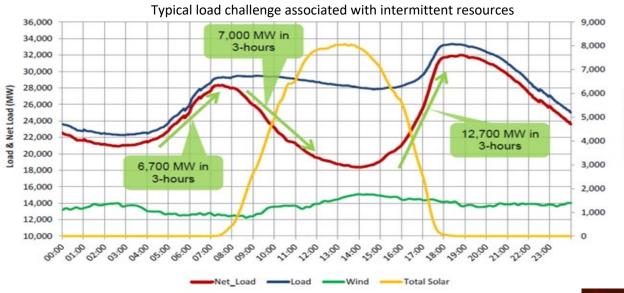
Unit 4: Construction Begins

2027

4 Units Operating

Transitioning from Coal to Nuclear

Advantages	Challenges	Comments
Coal plants like nuclear plants have been cornerstones of communities providing well-paying jobs and large tax revenues	Coal plants are generally sited closer to communities and may have other industrial neighbors	This is a change from traditional LWR's that are generally sited far away from community center HOWEVER Converting coal sites to nuclear helps stabilize communities that would have otherwise lost a significant economic backbone
Adv. Reactors with an EPZ at the site boundary allows developers to take advantage of these sites	Creates challenges around acceptance and the social license to build	We are assessing the regional socio-economic impact on a 4-pack standard deployment with Frostburg State University – Maryland Energy Administration Grant
Leverage site characterization data Coal sites with meteorological data and some geo-technical data can help speed up site characterization needed for NRC license	Greenfield sites or sites with no environmental data can add at least a year to the NRC licensing process	Each site has different parameters and characteristics that need to be evaluated individually, based on size, environmental factors, and environmental information needed for licensing
Feasibility studies need to assess the current infrastructure and if it can be reused with the nuclear design: Admin buildings Water intake Switchyard	Re-use of the infrastructure will be dependent on the age of the equipment and also how closely the output size matches Ex: Switchyard – If the current plant is only 200 MW and you put in a 320 MW plant the switchyard is now undersized for the power output and the project does not have sufficient grid interconnection capacity rights	Every site has its specific facilities and infrastructure that must be evaluated based on both the particular site, size of plant and specific reactor and its characteristics

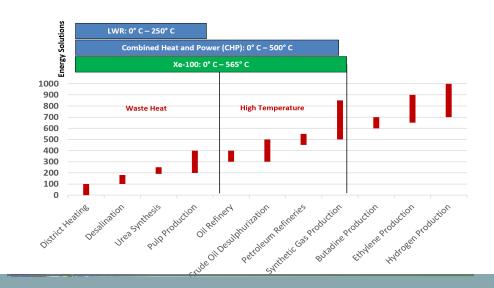


Ideal for Pairing with Renewables and Industrial Applications

(1) Right-sized power output

The reactor size of 200MWt (80MWe) has been designed to address the largest possible market providing a good fit for replacement of existing carbon-based heat sources such as coal and gas.

(2) Flexible power delivery


- Designed to be capable of fast and efficient load following. Load-follow with a reactor power ramp rate, up or down, of 5% per minute between 40% and 100% power.
- Ideal for utilities with renewables on their grid.

(3) Broad range of applications

Designed to be independent of the end use makes our solution deployable for electricity and many other process heat applications, such as:

- Hydrogen production;
- Petrochemical processing;
- Desalination; and
- District heating.

The Xe-100 can do both simultaneously or switch between applications.

Energy Density for Nuclear Makes It a Desirable Choice

1 pebble: 7g with 15.5% wt Low Enriched Uranium

27.4 MWh

2.66 metric tons of coal

8.0 metric tons of CO₂

~ 0.8 metric tons of ash

Power of the Pebble

