

Understanding Industrial Emissions

Industrial Emissions from Combustion of Fossil Fuels (MMT CO2e)

Understanding Industrial Emissions

Nuclear's Role in Industrial Decarbonization Strategies

Strategy	Nuclear Opportunities
Energy Efficiency	Use of waste heat from nuclear power plants in cogeneration applications
Electrification	Switching to electricity necessitates additional zero-carbon generation
Fuel Switching	Nuclear heat can be used for high-temperature industrial processes and to produce hydrogen
Fuels Decarbonization	Nuclear-produced hydrogen can be used directly or as a feedstock for other zero-carbon fuels (synthetic hydrocarbons, ammonia, etc.)
Carbon Capture	N/A

Required Temperatures for Applications are Key

Note: GFR — gas cooled fast reactor; HTGR — high temperature gas reactor; HWR — heavy water reactor; LMR — liquid metal reactor; LWR — light water reactor; MSR — molten salt reactor; NPP — nuclear power plant; SCWR — supercritical water reactor; SMR — small modular reactor.

Light Water Reactors

- Westinghouse AP1000: 324.7°C
- NuScale Power Module: 300°C
- GE-Hitachi BWRX-300: 287°C

Advanced reactor technologies

- X-energy Xe-100 (HTGR): 750°C
- TerraPower Natrium (SFR): 500°C
- Kairos Power (MSR): 650°C
- Ultra Safe Nuclear Corporation (HTGR): 630°C

Source: International Atomic Energy Agency (IAEA)

Industrial Primary Energy and Emissions

Nuclear Primary Energy – Final Use

Hydrogen Supply by Technology for Net-Zero Scenarios

High-Temp Electrolysis
Gas Reformation CCU

BECCS

Electrolysis

Gas Reformation