Spotlight on National Labs Nevada National Security Site Thursday, August 26

American Nuclear Society Thursday, Aug. 26, 2021

Spotlight on the Nevada National Security Site

LIUNA!

Welcoming Remarks

Roger Rocha

Vice President and Chief Operating Officer Mission Operations

NNSS overview

- We are a \$900 million/year enterprise, with more than 3,000 highly skilled, well-paid employees
- We enable the local economies surrounding our locations by awarding \$190 million/year to small businesses and 1,500 subcontracting jobs in Southern Nevada
- As the Ground Truth for the nation's innovation, the NNSS was established in the 1950s to prove the concept and designs of our nation's nuclear stockpile
- ► As the threats to our nation evolved over the years, so did we. We continue to:
 - Support the stewardship of the nation's nuclear deterrent
 - Provide nuclear and radiological emergency response capabilities and training;
 - Contribute to key nonproliferation and arms control initiatives
 - Work with national security customers and other federal agencies on important national security activities
 - Provide long-term environmental stewardship of the NNSS' Cold War legacy

Nevada National Security Site

Sandia Operations Albuquerque, New Mexico

Stockpile Experimentation and Operations

James Wallace

Senior Director Stockpile Experimentation and Operations (SEO)

From Underground Testing to Science-Based Stockpile Stewardship

- In 1989, the United States halted the manufacture of new nuclear weapons.
- In 1992, the United States conducted its last full-scale, underground nuclear weapons test (UGT).
- In 1994, Congress established the science-based Stockpile Stewardship program.
 - Maintains the continued safety, security and reliability of the nation's nuclear weapons in the absence of nuclear explosive testing.
 - Increases scientific understanding of nuclear device performance, as well as the aging behavior of weapon materials and components.
 - Annual stockpile assessments and certifications rely on computer simulations. To accurately model system performance, models require integrated weapons tests:
 - Hydrodynamic experiments are integrated experiments in which high explosives (HE) drive metals in weapon-like geometries, using non-fissile surrogate materials.
 - **Subcritical experiments** gather crucial data on plutonium driven by high explosives without a self-sustaining reaction (aka subcritical).

NNSS experiments conducted at:

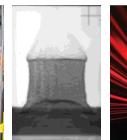
U1a

Subcritical Experiments (SCEs) at the NNSS (Current State)

The NNSS is the only location in the US authorized to conduct experiments with both high explosives and weapons-relevant quantities of Plutonium

- CEs are conducted in the U1a underground laboratory (963')
- SCEs started in 1997 and continue today with 16 planned over the next 5 years
- Proximity to Device Assembly Facility (DAF) enables efficient and flexible SCE component assembly

SCEs are:


- Conducted in vessels to safely confine the Pu
- Imaged by Cygnus, a dual axis, 2.25 MeV X-ray machine
- Recorded using state-of-the-art diagnostics
- Data collected by today's SCEs quantify the early-time behavior of weapon materials in the nuclear explosive package

U1a Hoist

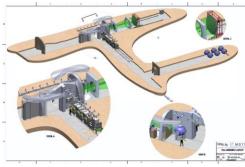
Cygnus X-Ray Machine

Vessel

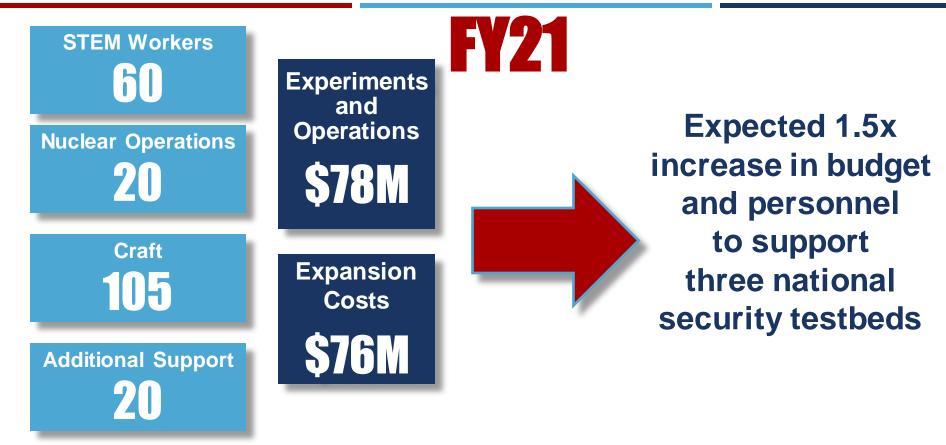
X-Ray Image Laser Diagnostics

Preparing for Additional SCE Capabilities at the NNSS (Future State)

Enhanced Capabilities for Subcritical Experiments will enable three decades of experiments for the NNSS and hi-tech employment opportunities for Southern Nevada


- UCEP is a line item mining and construction project that is developing infrastructure needed for new critical capabilities in U1a.
 - "Breakthrough" milestone in March 2021
- Scorpius is a Major Item of Equipment that consist of the design, build, and operation of a 20 MeV accelerator that will take x-rays of implosions.
 - Preparing a surface facility to enable an Integrated Test Stand prior to accelerator being moved underground
 - Hiring the resources to operate and maintain the accelerator
- Neutron Diagnosed Subcritical Experiments (NDSE) will provide the capability to image SCEs with neutrons
 - Design and construction of a new U1a testbed
 - Design, assembly and functional testing of the neutron source (called ZEUS)
 - Diagnostic and detector wall development

Breakthrough for the UCEP Project


NDSE Testbed Design

NDSE Source (ZEUS)

U1a: Benefit to Nevada and the Nation

Stockpile Operations and Environmental Management

Mark Krauss

Senior Director & Stockpile Operations Environmental Management Program

Environmental Management – Waste Disposal

MSTS operates the RWMC, disposes low-level radioactive, mixed low-level radioactive, and classified waste from on-site activities, and various DOE- and Department of Defense-related activities.

12

Global Security

Bart Jones

Senior Director Global Security

Global Security Overview

Focused on:

- Non-proliferation: Treaty monitoring and compliance technologies
- Counter-Proliferation/Counter-Terrorism: Full spectrum (CBRNE)
- Emergency Response: Search and Consequence Management Operations
- Cyber Security
- Autonomous Solutions/Sensor development and Integration – FAA selected site for Unmanned Aerial System (UAS) testing
- Quick response of Applied Technologies for specialized customers
- Emergency Communications

Defense Nuclear Nonproliferation

Melissa Hunt

Director Applied Technology

Defense Nuclear Nonproliferation Programs

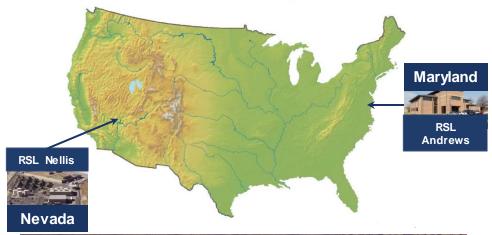
NNSS supports NNSA on nuclear nonproliferation, reduces threats, and responds to incidents around the world, in many ways discussed today. A major underpinning is R&D, often in partnership with National Labs, to detect and monitor:

- Nuclear fuel cycle and production Are we able to detect production of material for a nuclear weapon?
- Weapons development activities Are we able to detect nuclear weapon development or testing?
- Nuclear material Are we able to detect if material is being accumulated?
- Nuclear explosions Are we able to detect and characterize explosions as nuclear/radiological?

Research spans physics, chemistry, engineering, data science, geology and more – and usually culminates in realistic field collections.

Innovative Detection in Field Test Environment

State-of-the-Art Diagnostics Fielding and Testing


Nuclear Response Division Remote Sensing Laboratory

Dr. Alexis Reed

Director Nuclear Response

Remote Sensing Laboratory Locations and Programs

Nuclear Incident Response – Aerial Measuring System, Nuclear Search Program, Consequence Management Response Team/Home Team, Disposition Forensics Evidence Analysis Team (DFEAT), Render Safe Programs – ARG, JTOT, Stabilization

International training and collaborations High-TRL software and hardware development

RSL – Nellis Air Force Base and Joint Base Andrews

24/7/365 Nuclear Incident Response Assets

On-Call Teams for Radiological Emergencies

Deployable Field Teams / Home Team Reachback

Aircraft – Unique Aerial Detection Capabilities

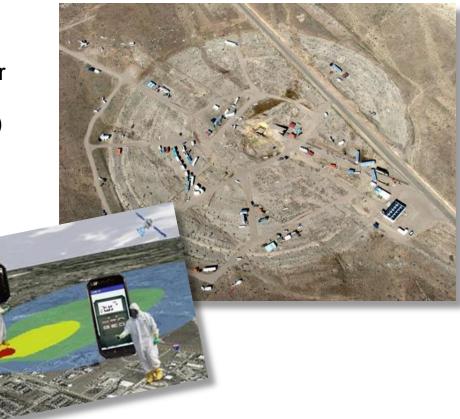
Counterterrorism Rad/Nuc Training

George Stamper

Manager II Counterterrorism Department

Counterterrorism Operations Support (CTOS)

- Established in 1998
- DHS/FEMA: National Domestic Preparedness Consortium (NDPC)
 - Train first responders: State, Local, Tribal, and Territorial
 - Chem/Bio/Rad-Nuc/Explosive, Natural Disasters, Incident Command, Trans
 - Mobile Training Teams, Resident, Virtual, Web, and Blended
 - CTOS total: 270,000 certificates
- ► DHS/CWMD: Securing the Cities
- Other customers
 - Federal and International partners
 - National Guard: All-hazards


Counterterrorism Operations Support (CTOS)

Comprehensive Curriculum

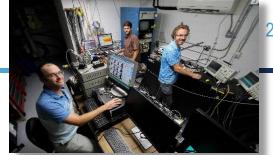
- Awareness, Preventive, Response, Planning/Operations, Train-the-Trainer
- Rad Exposure/Dispersal Devices, Improvised Nuclear Device (10 kiloton)
- Law Enforcement, Fire, Emer Medical, Planners, Rad Ops Support Spec
- Practical exercises, employment

► T-1 Training Site

- Established in 2004
- Apple II, 29 kiloton test, 1955
- Realistic training scenarios
- Virtual Radiation (VIRTUS)
 - Simulates hazards, Emulates detectors

Special Technologies Laboratory

Pamela Rangel


Manager III Special Technologies Laboratory

Special Technologies Laboratory

- The STL has a rich history on the Central Coast of California supporting the DOE and NNSA, as well as OGAs.
- Part of the NNSS, and have been supporting the Site since 1959, and are part of the Applied Technology Directorate under Global Security.
- We are a multi-mission laboratory, focused on mitigating threats to our nation.
- ► The STL is designated a Field Intelligence Element.
- ► We have six teams working in partnership:
 - Experimental Physics
 - Information Sciences
 - Nonproliferation Research
 - Services & Fabrication
 - Systems R&D
 - Facilities, Security, ES&H

Break-Through Integrated Sensing and Detection

Distance-To-Edge Communications and Computing

SPECIAL

TECHNOLOGIES

Human-Centered Design and User Experiences

SECURITY SITE

NEVADA NATIONAL

Special Technologies Laboratory

Experimental Physics

- Shock physics
- Pulsed radiography
- Pulsed radiation sources
- Classical optics and fiber laboratories
- Laser systems
- Electronics laboratories
- Prototype shop

Nonproliferation Research

- Remote Sensing
- Test bed ground truth
- Mass Spectroscopy and Ion Mobility
- Platforms exploitation
- Data analytics/AI/ML

Information Sciences and Systems R&D

- Systems Integration Development
- Rapid Development Cycles and Field Support
- Custom packages, low power electronics
- Test and evaluation
- Cyber assessments
- DOE IN Infrastructure
- DOE AU-52, Physical Security support

STL 226 Complex

- Laser Range
- Gas and Powder Guns
- Explosives Facility
- Febetron Lab
- Chemistry, Optics, Metrology Labs

STL 5520

- Engineering Development
- · Electronics Manufacturing
- SCIF
- Secure IC Communications
- Mission Support

Mission Support

Mission Assurance

John Contardi

Senior Director Mission Assurance

Mission Assurance Overview

Mission Assurance is a service center for safe and compliant mission enablement, comprised of:

- Environmental, Safety, and Health
 - Radcon, IH, Environmental mgt, Hazmat, and Occupational medicine

Quality Services & Support and Contractor Assurance System

- Quality assurance
- Material testing and calibration laboratory
- Records/document management
- Issues management, assessment, lessons learned

Security and Emergency Services

- Safeguards and security
- Emergency management and response
- Material control and accountability

Operations Assurance

- Formality of Operations
- Regulatory Compliance

Nuclear Assurance

- Nuclear Safety
- Criticality Safety

Science & Technology

Dr. Jose Sinibaldi

Chief Scientist/Program Director Science and Technology

Science and Technology Thrust Areas Initiative Goals and Objectives

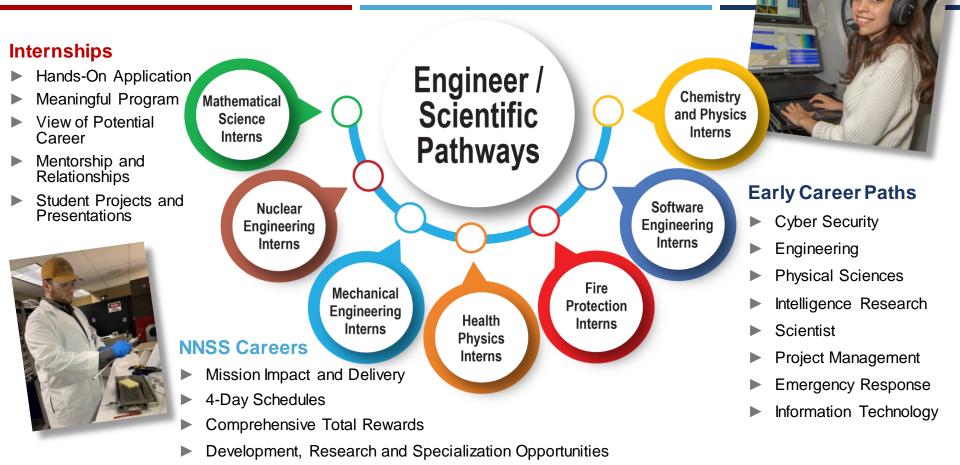
- Strengthen existing technical capabilities
 - Deepen our scientific and engineering benches in identified thrust areas
 - Broaden exposure to our S&T staff and provide them with opportunities across stockpile, global security and strategic program missions
- Prepare the NNSS for agile response to future national security threats
 - Attract and retain topnotch talent
 - Enable cross training across Stockpile and Global Security organizations
- Enhance University collaborations
 - Inject innovation into program missions and
 - Develop STEM pipelines with critical SKAs

Science and Technology Centers – Thrust Areas

31

Dynamic Experiment Diagnostics	Radiographic Systems Imaging and Analysis	Neutron Technologies and Measurements	Accelerator Beam Science and Target Interactions	Communications and Computing	Enabling Technologies for Autonomous Systems and Sensing	User-Centered Remote Testing and Operations
Advancements in electro-optical interferometry	Source and detector modeling, shielding, and collimation	Neutron diagnostics, readiness, and responsiveness	Advanced pulsed power systems	RF comms – 5G/WiFi-6, beyond line of sight, software-defined radio	Miniaturization, SWP, electronics/firmware, high density energy source	National/international database format with advanced analysis
Novel camera and optical systems	Scintillators and x-ray diagnostics	Reactivity detectors, neutron imaging, and analysis	Accelerator and beam diagnostics	Cyber ML, secured comms, real-time threat prediction and attribution	Advanced chemical and radiation detection for UAS and airborne payloads	Real-time remote data interfaces and experiment control
Dynamic temperature and other advanced EOS diagnostics	Imaging systems for x-ray and neutrons with advanced data analysis	Neutron source development and advanced portable sources	Accelerator beam science and target interaction	AR/VR for hybrid field missions/training, AI/ML performance analytics	Sensor fusion analysis – AI/ML for edge computing and event identification	Underground and remote location technical operations and management
Ultra-fast imaging systems	ML radiography analysis methods	Advanced neutron detection, imaging, and analysis methods	Advanced accelerator controls and data acquisition configurations	Switch at NNSS – Data Center, classfied HPC, self-healing networks AI/ML, millimeter wave	cUAS technologies, blocking/swarming, neutralization of jamming and RF intrusion	Geophysics sensors and HPC for automated data analysis of large datasets
Integration of quantum sensing for advanced diagnostics and imaging	Advanced radiographic systems and HPC for automated data analysis	Advanced neutron sources with 100x brightness/energies	Integrated test stand as technology development and maturation platform	AI/ML for autonomous signal classification and response	Integration of quantum sensing technologies into autonomous systems	Advanced fiber-optic and quantum sensing technologies

Phase 1 thrust areas (in blue) and Phase 2 thrust areas (in gray)


Internships to Early Career

Brent Baker

Manager II Talent Acquisition

Internships to Early Career

Questions?

flickr

G

For more information, visit NNSS.gov or follow us

You Tube

