Skip to content
  • Scholarships
  • Honors/Awards
  • Nuclear Careers
  • Policy
  • Nuclear News
  • ANS Store
  • Join
  • Donate
  • Sign In
American Nuclear Society
  • About ANS
      • Mission and Vision
      • Society Structure
      • Governance
      • Position Statements
      • Diversity Statement
      • Donate
      • Advertising
      • Join
      • Contact Us
    • About ANS

      ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.

  • About Nuclear
      • Nuclear Science 101
      • Nuclear in Every Classroom
      • Radiation
      • Nuclear Energy
      • Classroom Resources
      • Dose Calculator – How much radiation did I really get?
    • About Nuclear

      Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.

  • Communities
      • Professional Divisions
      • Local Sections/Plant Branches
      • Student Sections
      • Young Members Group
      • Diversity and Inclusion in ANS
    • Division Spotlight

      Fusion Energy

      Fusion Energy

      This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.

  • Meetings
      • Upcoming Meetings
      • Meeting Calendar
      • Meetings Archive
      • Webinars
      • Resources
    • Meeting Spotlight

      Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2021)

      February 9–11, 2021

      Virtual Meeting

  • Standards
      • What's New
      • Purchase Standards
      • How to Get Involved
      • Resources
      • ICONS
      • Nuclear Standards News
      • Inquiries
      • Errata
    • Standards Program

      Standards

      The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!

  • Publications
      • ANS Library
      • Magazines
      • Journals
      • Books
      • Newsletters
      • Proceedings
      • Transactions
      • Subscriber Access
    • Latest Magazine Issues

      Jan 2021

      Jul 2020

      Latest Journal Issues

      • Nuclear Science and Engineering

        February 2021

      • Nuclear Technology

        January 2021

      • Fusion Science and Technology

        November 2020

  • Newswire
      • Latest News
    • Latest News

      Notes on fusion

      The ST25-HTS tokamak.

      Governments around the world have been interested in fusion for more than 70 years. Fusion research was largely secret until 1968, when the Soviets unveiled exciting results from their tokamak (a magnetic confinement fusion device with a particular configuration that produces a toroidal plasma). The Soviets realized that tokamaks were not useful as weapons but could produce plasma in the million-degree temperature range to demonstrate Soviet scientific and technical prowess to the world.

      Following this breakthrough, government laboratories around the world continued to pursue various methods of confining hot plasma to understand plasma physics under extreme conditions, getting closer and closer to the conditions necessary for fusion energy production. Tokamaks have been by far the most successful configuration. In the 1990s, the Tokamak Fusion Test Reactor at the Princeton Plasma Physics Laboratory produced 10 MW of fusion power using deuterium-tritium fusion. A few years later, the Joint European Torus (JET) in the United Kingdom increased that to 16 MW, getting close to breakeven using 24 MW of power to heat the plasma.

  • Search
  • Scholarships
  • Honors/Awards
  • Nuclear Careers
  • Policy
  • Nuclear News
  • ANS Store
  • Join
  • Donate
  • Sign In
  • Home
  • ANS Store
  • Special Publications

My Cart

0

Categories

Categories
  • Books
    • Handbooks and Directories
    • Monographs
    • Special Publications
    • Textbooks
  • Bundles
  • Journals
  • Magazines
    • Buyers Guide
  • Merchandise
  • Power Plant Maps
  • Proceedings
  • Public Information
  • Standards
    • Standards Bundles
    • Trial-Use Standards
    • Standards Publications
  • Transactions

Order History

Order History
  • Downloads
  • Invoices

Resources

Resources
  • Journal Articles
  • Standards Sales List — PDF
  • Additional Historical Standards — PDF

Terms and Conditions

Terms and Conditions
  • Sales and Service
A Dialogue on Chemically Induced Nuclear Effects: A Guide for the Perplexed About Cold Fusion

A Dialogue on Chemically Induced Nuclear Effects: A Guide for the Perplexed About Cold Fusion

Nathan J. Hoffman

Item ID: 690041|ISBN: 978-0-89448-558-9

1995|1st Edition|215 pages

Regular Price
Member Price
Savings
Regular Price$37.00
Member Price$33.30
Savings$3.70

ANS Members, please log in to purchase.

Description

A Dialogue on Chemically-Induced Nuclear Effects is a comprehensive and accurate summary of most of the work available on the topic of cold fusion. Funded by the Electric Power Research Institute, the intent of this work is to provide an objective look at the anomalous nuclear effects research that is central to the cold fusion controversy. The essence of the cold fusion story is the question of whether chemistry can affect nuclear reactions. Presented in dialogue fashion (the young physicist to the older metallurgist), this interestingly written book attempts to aid in an understanding of the artifacts that confuse the issues.

Recommend to My Librarian

Customers Also Purchased

The Nuclear Fuel Cycle
The Nuclear Fuel Cycle
Direct Conversion of Nuclear Radiation Energy
Direct Conversion of Nuclear Radiation Energy
Inertial Electrostatic Confinement (IEC) Fusion: Fundamentals and Applications
Inertial Electrostatic Confinement (IEC) Fusion: Fundamentals and Applications
Light Water Reactor Materials, Volume I: Fundamentals
Light Water Reactor Materials, Volume I: Fundamentals
Design Guides for Radioactive Material Handling Facilities and Equipment
Design Guides for Radioactive Material Handling Facilities and Equipment
Hafnium in Nuclear Engineering
Hafnium in Nuclear Engineering
Nuclear Production of Hydrogen: Technologies and Perspectives for Global Deployment
Nuclear Production of Hydrogen: Technologies and Perspectives for Global Deployment
A Brighter Tomorrow: Fulfilling the Promise of Nuclear Energy
A Brighter Tomorrow: Fulfilling the Promise of Nuclear Energy
Nuclear Criticality Safety: Theory and Practice
Nuclear Criticality Safety: Theory and Practice
Power Development in a Developing Country - Experiences with Taipower
Power Development in a Developing Country - Experiences with Taipower
Receive Nuclear SmartBrief
Join ANS Today
Donate Today
American Nuclear Society

Advance, foster, and spur the development and application of nuclear science, engineering, and technology to benefit society.

  • Advertising Opportunities
  • Navigating Nuclear
  • Contact Us
  • FacebookFacebook
  • TwitterTwitter
  • LinkedInLinkedIn
  • InstagramInstagram
  • PinterestPinterest
  • ANSNuclearCafeANSNuclearCafe

© Copyright 2021 American Nuclear Society

  • Privacy Policy
  • Terms of Use
  • Invoices
  • Media