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with  artificial 
	 intelligence

Hidden	treasure

We’ve all heard the stories of lost treasures being found in dust- filled attics, 
locked away in forgotten wall safes, or hidden in secret compartments of antique 
desks. Some of these true accounts, such as a rare copy of the Declaration of 
Independence hidden behind wallpaper or an authentic Van Gogh relegated to 
collecting dust in an attic, can lead to seven-  and eight- figure jackpots when the 
discoveries are made.

What about our own treasures locked away in long- forgotten data storage 
drives or plant process computers? Imagine that you could gain keen insight 
into every operational issue you have by using the data you’ve been collecting for 
decades. In a nuclear power plant, data is routinely generated and collected for 
a myriad of purposes—whether it be for core monitoring, exposure accounting, 
equipment monitoring, or other reasons. While that data may serve its primary 
function exceedingly well, the information contained within it and in the aggre-
gate is profoundly richer than most could imagine.

Worldwide, over 40 percent of companies have leveraged their data to some 
degree to enjoy a diverse set of benefits. Topping that list are better understanding of 
customer behavior, improved control of operational processes, better strategic deci-
sions, and cost reductions. Furthermore, those organizations that are able to quan-
tify the gains from leveraging their data have reported an average 8 percent increase 
in revenues and a 10 percent reduction in costs.1 While the nuclear energy sector 
may be late to the party, there is still time to reap the value hidden within its data 
before it is downsampled for archiving, corrupted beyond repair, or lost entirely.

1  C. Bange, T. Grosser, and N. Janoschek, “Big Data Use Cases 2015,” BARC Research, July 2015; 
barc- research.com/research/big- data- use- cases- 2015.
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Current	industry	landscape	(a	mixed	bag)

The outlook for the existing nuclear fleet 
is a complicated one. On the one hand, the 
need for a robust nuclear energy sector has 
never been greater. The overarching need to 
transition to a carbon- neutral energy land-
scape should place nuclear as the favorite 
to replace coal, natural gas, and oil as the 
baseline energy source. The electric grid 
requires reliable “always on” electric power 
that can be supplemented with other forms 
of low- carbon- emitting energy. While solar 
and wind are available 24.5 percent and 34.8 
percent of the time, respectively, the nuclear 
backbone is available 93.5 percent of the time 
in the United States.2

In one sense, the nuclear industry is expe-
riencing a resurgence. Public opinion and 
political will have followed the drive to limit 
or eliminate carbon emissions. People gener-
ally see nuclear as a safe, carbon- free solution 
to preserve the environment. These shifting 
winds are signified by the state of Illinois recently recog-
nizing nuclear energy as critical to achieving its clean air 
goals and committing more than $700 million in support 
of Constellation’s nuclear power plants to avoid several pre-
mature plant shutdowns.3

On the other hand, while the nuclear industry has 
been providing clean, safe power for over 60 years with a 
carbon- free footprint and a pristine safety record, making 
it a keystone of U.S. carbon- free energy production, there 
remain economic forces that challenge its long- term via-
bility. The industry’s unique regulatory environment and 
higher generation costs than those associated with fossil 
fuel plants are both factors that sit squarely at odds with 
our climate objectives. 

Consequently, while many countries are bringing new 
nuclear plants on line to provide carbon- free energy, the 
share of power generation from the domestic nuclear fleet 
is shrinking. As of May 2021, 52 reactors were under con-
struction worldwide, with China planning to build 150 new 
reactors over the next 15 years. Compare this with only two 

2 “What is Generation Capacity?” U.S. Department of Energy, 
Office of Nuclear Energy, May 1, 2020; energy.gov/ne/articles/
what- generation-capacity.

3 “Bill to preserve Illinois nuclear passes legislature,” Nuclear Newswire; 
ans.org/news/article- 3247.

reactors under construction in the United States!
The energy outlook for renewables is a favorable one, with 

the share of power generation from wind and solar dou-
bling between now and 2050.4 This is only part of the equa-
tion, however. Nuclear energy will be vital to meeting our 
collective climate goals with a clean energy mix of wind, 
solar, and nuclear. To ensure the continued viability of 
nuclear energy, we must deepen our understanding of key 
aspects of nuclear power generation and strive to continu-
ously reduce generation costs using the latest, most effective 
technologies available.

There is a clear opportunity to apply artificial intelligence 
(AI) and machine learning (ML) to improve nuclear plant 
efficiency and reduce costs. AI can be used over a wide 
range of nuclear plant operations, from predicting compo-
nent lifetimes and evaluating asset health to understand-
ing core dynamics for more accurate reload planning and 
economical fuel purchasing. The application of AI/ML to 
reload core design has been a key player in reducing reload 
fuel costs, which account for 20 percent or more of total 
power generation costs.

4 Annual Energy Outlook 2021, U.S. Energy Information Administra-
tion; eia.gov/outlooks/aeo. 
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The	reload	process

Today’s operating nuclear plants go through a complex 
process of designing the reactor core as part of the reload 
process (i.e., preparing to reload the core for a new fuel 
cycle). There are many design constraints, goals, and lim-
its that must be met during the reload process to ensure 
a safe and economically viable fuel cycle, such as total 
energy production, fuel exposures (for fuel pellets, fuel 
rods, and fuel bundles), radial bundle power, and ther-
mal limits.

In a typical 24- month nuclear fuel cycle, approximately 
one- third of the fuel is fresh, one- third has been in one 
prior cycle, and one- third has been in the reactor for 
two fuel cycles. The cost of fuel for a two- year fuel cycle 
can be as high as $100 million. Thus, the reload process 
employed by nuclear fuel departments is highly lever-
aged economically, and improvements can yield signif-
icant cost savings. Moreover, the reload process spans 
approximately one year from establishing the design 
goals and limitations, designing the fuel and reactor 
core, licensing the core, fabricating the fuel, shipping the 
fuel to the nuclear station, loading the new fuel into the 
core, and preparing the startup and operating plan for 
the two- year fuel cycle. The energy obtained from each 
fuel bundle must span three fuel cycles and deliver the 
planned energy over its six- year lifetime. If the exploit-
able energy is somehow miscalculated, there is an impact 
on the energy output for the next six years, and thus the 
economic performance of the reactor may be materially 
significant.

Calculations in the reload process, which predict 
energy output six years in advance, are daunting and 
complex tasks. The planning team must navigate a lab-
yrinth of regulations that apply to the complex compo-
nents of the reactor while accounting for a myriad of 
nuances in the fuel that impact ultimate performance 
and the ability to meet thermal limits while delivering 
rated power.

Fuel is not just fuel. The distributions of uranium, 
enrichment, and burnable absorbers such as gadolinium 
all vary throughout the array of assemblies. The distribu-
tion is aimed at meeting safety and operational require-
ments while minimizing fuel costs. In addition, in light 
water reactors, the water, which acts as both a coolant and 
a moderator, flows through channels in the fuel assem-
bly. To complicate matters further, new fuel designs are 

introduced periodically. New designs not only change the 
mechanical design and composition of the fuel but also 
modify the way coolant flows through the bundle, which 
has a ripple effect on energy output.

Stubborn	reload	design	problems

Historically, several problems have persisted that affect 
the ability to further improve the economics of reload 
fuel planning. These problems can limit reductions in the 
amount of fresh fuel required to be loaded into the core 
(known as the reload batch size), resulting in excess direct 
fuel costs. In addition, they can have an impact of power 
generation if the core is less reactive than expected, or by 
the potential need to derate power if conditions require it.

Key problems
 ■ Inability to predict moisture carryover—The 

amount of moisture mixed with steam leaving the reactor’s 
moisture separators, referred to as moisture carryover 
(MCO), has been nearly impossible to predict by conven-
tional methods. There are design specifications limiting 

Relationship of high MCO to cumulative radiation exposure and costs 
at a given generating station. High MCO can lead to accelerated 
rate of erosion of main turbine components (above 0.10%) and 
accelerated rate of erosion of main steam isolation valve internal 
surfaces (at 0.30%).

Continued
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how much MCO is permissible before the operator must 
take remedial action (of which one costly option is a power 
derate). Excess moisture in the steam is problematic for 
many reasons, most importantly due to the ability to carry 
impurities dissolved in the water throughout the entire 
plant. MCO can increase erosion of the internal surfaces 
of the main steam isolation valves and at the turbine, 
potentially causing costly repairs. Perhaps even more trou-
blesome, soluble cobalt- 60 is carried over with the steam, 
increasing plant dose rates and the collective radiation 
exposure of plant personnel. Beyond this, a small reduc-
tion in electrical output is expected with high MCO. Until 
recently, the primary method to mitigate high MCO was 
to design the core with a larger- than- required reload batch 
size, thereby introducing potentially unnecessarily high 
reload fuel costs.

 ■ Unpredictability of eigenvalue in BWRs—The 
hot reactivity parameter of the core (known as keffective or 
simply the eigenvalue) is one of the most fundamental 
parameters in nuclear engineering and has been notori-
ously difficult to predict accurately in boiling water reac-
tors. Its trend directly affects the energy capability of the 
reload core, and an inaccurate eigenvalue projection can 
be costly. If the actual eigenvalue is higher than predicted 
at the rated power, then the designed core’s reactivity is 

less than expected, thus leading to less generation output 
than desired (costing perhaps upward of $1 million per 
fuel cycle). Whereas if the actual eigenvalue is lower than 
predicted at rated power, then the designed core’s reactivity 
is greater than necessary, and more fuel was purchased 
and loaded than required (potentially costing upward of $1 
million more than necessary).

Conventionally, eigenvalue predictions rely on estimates 
made by a committee of experienced core designers looking 
at past eigenvalue behavior and the characteristics of the 
reload core being designed. This approach has its limita-
tions, especially when new fuel or core designs are intro-
duced, and on average has been sufficient to achieve a devia-
tion D ~ ±0.002 between the design and on-line eigenvalue. 
The possibility exists to reduce this deviation fourfold, 
thereby leading, potentially, to millions in annual savings.

 ■ Uncertainty in predicting on-line thermal limits—
Compliance with technical specifications for thermal 
limits is essential for operating reactors. Core designs 
include margin to these limits to prevent challenges to the 
operators. Core designs are performed with what is called 
“off- line” nuclear methods, which have no feedback from 
in- core nuclear instrumentation, while actual core moni-
toring is performed with “on- line” nuclear methods, which 
do have feedback from the in- core nuclear instrumenta-
tion. These differences cause a bias between the off- line and 
on- line thermal limits, which must be taken into account 
during core design. This is a challenge, since the bias varies 
from cycle  to  cycle, which makes its quantification diffi-
cult. The same principle described above applies, where too 
much margin results in increased fuel costs and less- than- 
adequate margin results in operational challenges and 
potential decreased generation revenue.

Accurately predicting the behavior of these import-
ant attributes has been extremely challenging for BWRs, 
because the dominant mode of operation in a BWR is a 
complex two- phase flow in the upper part of the core that 
in turn affects the reactivity. Incomplete understanding 
of the physics of two- phase flow in this region results in 
a costly degree of uncertainty. These problems limit the 
exploration and realization of more economical fuel load-
ing strategies that, if solved, could lead to a 10 percent 
reduction in fuel costs in the aggregate. Importantly, AI 
and ML show significant promise for solving these prob-
lems, with solutions already being deployed in many BWRs 
across the domestic fleet.Disparity between the on-line eigenvalue and design targets 

obtained through conventional means. 
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Energizing	reload	design	with	AI

In 2017, Blue Wave AI Labs and Constellation (formerly 
Exelon Generation) began working together to apply tech-
niques rooted in artificial intelligence to solve some of 
these problems. Constellation operates the largest fleet of 
nuclear plants in the United States (14 BWRs at eight gen-
erating stations, and 7 PWRs at four stations) and, conse-
quently, has a substantial amount of design, performance, 
and operational data relevant to these key challenges. In 
particular, the MCO and eigenvalue predictability prob-
lems were the first to be tackled, and solutions to both are 
being integrated into Constellation’s reload design process.

Machine learning for nuclear power
First, a little jargon. Machine learning is a branch of arti-

ficial intelligence that extracts answers to complex problems 
that may be intractable by more conventional means. It is 
especially useful where large amounts of data are available 
corresponding to unusually complex non linear problems 
that aren’t solvable by analytical techniques or physics- 
based models. While there are many branches within ML, 
the objectives broadly fall into several categories:

 ■ Supervised learning
 ● Regression—used to predict a continuous variable 

such as thermal limits, MCO, or keffective at a given reac-
tor statepoint. 

 ● Classification—used to assign elements to one 
of many categories (for example, equipment mon-
itoring through determination of diagnostic 
health states). 

 ■ Unsupervised learning—used for clustering, anom-
aly detection, dimensionality reduction, and feature 
engineering.

The underpinning of ML is the universal approximation 
theorem, which guarantees that an artificial neural net-
work can represent a true function, F(x), to an arbitrary 
degree of accuracy if certain straightforward conditions 
are met. Even more important is the existence of sufficient 
data with a distribution that approximates the distribution 
expected for the target system.

The training data is the dataset used to infer this func-
tion and consists of many historical observations. The 
function’s inputs, or raw features, are the statepoints of the 

reactor →xi at a given instant in time, whereas the targets are 
the corresponding outputs of the true function, yi = F(→xi). 
The MCO measurements, on-line eigenvalue, or ther-
mal limits are the training targets for the three problems 
described.

Fundamentally, a reactor statepoint is the collection of 
all the information necessary to completely describe the 
state of the core at a given instant. In practice, we must rely 
on limited information that is known through measure-
ment, design, set point, or simulation. For example, the 
measurement of operational parameters such as thermal 
power and core flow, the control rod pattern plus notch-
ing, fuel and lattice designs, and the plethora of outputs 
from the core simulator collectively form an approximate 
representation of the core. By having enough observations 
(→xi, yi), the underlying function that governs a process can 
be learned.

It’s all about the data
Returning to the problems at hand, each two- year fuel 

cycle contains hundreds of daily reactor statepoints. While 
each cycle may contain hundreds of points, in one respect, 
the fuel cycle itself can be regarded as a solemn point that 
codifies all the information pertaining to that designed 
core. As such, it is crucial for data from multiple fuel cycles 
to be pooled together in the training set to learn the com-
plete functional dynamics.

For multi- reactor sites, it may be possible to combine the 
data from each unit if the underlying function is expected 
to be similar. Constellation has between six and eight fuel 
cycles worth of data across most of its BWRs. While this 
may seem like a lot (tens of thousands of datapoints in the 
aggregate), typical applications of ML, such as image rec-
ognition, require millions of training samples. A number 
of techniques have been employed to enhance the datasets, 
including data augmentation for maintaining expected 
distributions, interpolation of training targets, and transfer 
learning to take maximum advantage of information from 
multiple sites. These techniques have made it possible to 
extend the development of highly accurate models to reac-
tors possessing less data than would otherwise be required.

Another challenge to overcome concerns the decision of 
what input features are necessary for training. Oftentimes 
this becomes the major obstacle in adopting AI within a 

Continued
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Visualization of bundle parameters within a BWR core. 

very specialized domain like 
the nuclear energy sector. 
A pure data scientist 
may approach the 
problem with the 
attitude “the more 
inputs the better,” 
but that per-
spective does not 
work when the sheer 
number of inputs matches or 
outweighs the number of training 
examples. 

Here, the input feature space consists of 
tens of thousands of bundle and nodal outputs 
from a core simulator, hundreds of thousands of pin- by- 
pin fuel attributes, and dozens of global reactor variables. 
Left unconstrained, all this information can be used to train 
a model with precisely zero training error and absolutely 
zero predictive power! Where’s the utility in that?

Too many variables and too much training cause the 
model to be useful for the training set only, not more general 
situations. When this occurs, the model has fit the noise in 
the data, masking the underlying functional dynamics, and 
the model is said to be overfit (comically so, in this exam-
ple). Likewise, the complexity of the model’s architecture 
(the number of neurons, for example) also contributes to the 
likelihood of overfitting. Conversely, when a model contin-
ues to perform well in new situations (e.g., new fuel cycles), 
it is said to “generalize” well. Generalization means that the 
underlying dynamics governing the process are captured 
well by the model, and the training process is stopped before 
latching onto the random noise within the data.  

The trick is to find a balance between (1) the size and 
nature of the input feature space and (2) the model archi-
tecture—collectively, the modeling methodology—and to 
meticulously validate the methodology in order to arrive 
at the most generalizable model. For MCO, the answer is 
to reduce the input feature space to a “canonical set” of key 
drivers of MCO through feature engineering and a physi-
cal understanding of the underlying mechanism. In doing 
this, the input feature space is reduced to a few dozen key 
variables that capture the dynamics of MCO. This allows 
us to develop models with parameters that operators can 
control, giving the models not only predictive power but, 

just as important, corrective 
power. For eigenvalue, the 

successful approach 
relies more on the 

nature of the 
model’s archi-
tecture, while 

retaining the 
vast collection 
of input fea-

tures that consti-
tute a reactor statepoint. 

Through the clever transformation 
of each statepoint into a three- dimensional 

image of the reactor core—viewed through various 
“filters” of exposure, void, power, and so on—we exploit a 
convolutional neural network architecture, which has been 
shown to be very effective with tasks like image recogni-
tion and natural language processing.

Predictive power
As with any innovation, results are the ultimate arbiter 

of its value or utility. For MCO, an example of this pre-
dictive capability is illustrated in the graphs on the next 
page, where the model predictions are stacked up against 
MCO measurements for two of Constellation’s units. Here, 
the model predictions are obtained from the exposure 
accounting collected throughout the cycle.

Since the time the model was first deployed, and over 
the past three years, the average prediction error is ±0.018 
percent MCO at this station. This exceptional level of per-
formance is now limited only by the resolution imposed 
from the MCO measurement uncertainty. Similar levels 
of accuracy have been obtained at the 10 additional BWRs 
that have adopted this enabling technology.

Also shown in the graphs, the eigenvalue model perfor-
mance demonstrates a fourfold reduction in prediction 
uncertainty when compared against the current state of 
practice, with an average error less than ±0.0005. More-
over, this level of performance is extensible across the 
BWR fleet, and recent advancements in model architecture 
demonstrate remarkable resilience when new fuel types are 
introduced into the core.
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Seamless integration from reload design to cycle management
These AI- based predictive algorithms have been turned 

into cloud- based platforms, MCO.ai and eigenvalue.ai, 
which are now fully integrated into the reload process. Each 
iteration of the core design, of which there are many, can 
be run through the platform to assess the design’s impact 
on MCO and eigenvalue trend. Core designers can plan 
scenarios at will from their desks and explore hundreds of 
options for bundle specifications, reload batch size, loading 
patterns, reactivity control strategies, and so forth. Remem-
ber, these predictive models are constructed from input 
features derived from core conditions and core simulator 
outputs—all of which are projectable during the early stages 

of the reload design process. Consequently, these tools take 
those core projections and give the core designer a reliable 
forecast of MCO and eigenvalue behavior upward of a year 
before the fuel cycle even commences. In this way, the 
reload core design can be optimized to reduce the reload 
batch size and/or enrichment, lower MCO below the pre-
scribed limits, and ensure that energy requirements are met 
with more reliable eigenvalue forecast. 

These new capabilities extend beyond just core design. 
The same concepts apply to cycle management strategy 
evaluation. If unforeseen changes occur relative to the 
planned operating strategy, such as a fuel failure, unplanned 

Prediction accuracy of eigenvalue and MCO ML models at two BWRs.

Continued
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downtime, or startup delay, then this predictive suite can 
be utilized to analyze alternate operating scenarios and 
provide user- friendly comparisons. In fact, a fuel defect 
occurred at a BWR in 2019 that required power suppression 
control rods to be inserted through the end of cycle. The 
two fully inserted control rods resulted in a larger increase 
in MCO than normal—a step change in MCO from 0.05 
percent to 0.4 percent that can be seen in the Unit 1 MCO 

graph on the previous page (which the model predicted with 
superior accuracy). This raised the question of whether a 
mid- cycle shutdown would be required to remove the fuel 
defect prior to achieving unacceptably high MCO levels. 
By utilizing MCO.ai, an operating strategy was devised to 
maintain MCO levels below the procedural limit through 
end of cycle, thereby avoiding a costly outage (upward of 
$6 million).

The	bottom	line

In partnering with Blue Wave AI Labs, Constellation 
has achieved breakthrough levels of insight and opera-
tional predictability for two long- running problems in 
its BWR fleet. The use of ML integrated with the core 
design and cycle management processes provides fuel 
cost reduction, results in lower plant dose rates, protects 
plant assets, avoids generation revenue losses, and reduces 
rework, which returns hours to the business. Blue Wave 
AI Labs and Constellation are leading the industry with 
these advancements and are pursuing other applications to 
improve nuclear power operation and economics.

The savings of tens of millions of dollars in only a few 
years is just the start to uncovering the hidden treasure 
from the thousands of terabytes covering all plant oper-
ations across the domestic fleet. Blue Wave and Constel-
lation are working to apply these techniques to a host of 
other high- value problems. These include more precise 
thermal limit calculations, virtual calibration and mea-
surements, and remaining useful life of plant components 
that enable true condition- based maintenance strategies. 
Further work of this type is also proceeding in our domes-
tic pressurized water reactor fleet. Finally, much of this 

insight—such as answers to the questions of sensor type 
and number—will be applied to next- generation plant 
designs. The nuclear industry is on the precipice of assum-
ing its natural place as the central backbone of carbon- free 
power. AI will accelerate this ascension and deliver insights 
and savings at a new level. This is just the beginning. 

The authors are thankful to the Nuclear Energy Institute for jointly recognizing Con-
stellation (named Exelon Generation at the time) and Blue Wave AI Labs with a Top 
Innovation Practice (TIP) award for “Moisture Carryover (MCO) Predictions through 
Neural Networks” at the recent NEI 2021 Annual Meeting. The prestigious award in 
the nuclear fuel category recognizes creative ideas that have substantial impact on 
improving the safety and reliability of nuclear energy. The concept of MCO.ai was also 
selected to be part of the Electric Power Research Institute’s Plant Modernization Tool-
box as a Modernization Technology Assessment. EPRI’s Plant Modernization Toolbox 
is a resource to facilitate decision making and execution of the modernization process 
at nuclear power plants. It includes a variety of tools and aids to assist nuclear plants 
to identify and evaluate cost savings from technology and process improvements.
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