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Abstract — The concept of a view factor has recently been proposed to describe the fraction of leakage 
neutrons from a spherical nuclear assembly that will enter another coupled assembly. Earlier applications 
used an approximate form of this quantity for the transport of heat and radiation between two spheres. The 
same approximate form was employed in the case of coupled nuclear assemblies. We show that it is possible 
to obtain an exact expression for this quantity that eliminates the need for such an approximation.
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I. INTRODUCTION

The concept of a view factor has applications in the 
transport of heat and radiation. The view factor is defined 
by a four-dimensional integral as described in a later sec
tion. For the case of two spheres, an approximate form of 
this quantity (referred to as Felske’s approximation) has 
been in use in heat transport studies.[1] In a recent paper 
dealing with the study of initiation probability in coupled 
spherical assemblies, Prinja et al.[2] employ the Felske 
approximation to obtain the view factor. An earlier paper 
by O’Rourke and Prinja[3] discusses various methods such 
as Felske’s approximate expression and a detailed Monte 
Carlo approach for obtaining this quantity. The integrals 
involved in the calculation of the view factor are consid
ered to be too complicated[3] for exact analytical evalua
tion, and hence, the approximate form or Monte Carlo 
calculations have to be employed for this purpose.

This letter shows that by choosing the variables suitably 
and by rewriting the integral, it is possible to reduce the four- 
dimensional integral to a simple one-dimensional integral. 

For spheres with equal radii, an analytical expression in 
terms of complete elliptic integrals is obtained (which reduces 
to an elementary integral for two equal spheres in contact with 
one another). For the general case of unequal spheres, the one- 
dimensional integral is easily evaluated using low-order 
Gauss quadrature. Thus, it becomes possible to obtain accu
rate values of the view factor for spherical systems without the 
need for approximate forms or more involved Monte Carlo 
calculations. Results obtained by the present method and 
comparisons with the Felske approximation are presented.

II. DEFINITION OF THE VIEW FACTOR

The view factor is defined[3] by the following inte
gral over the surfaces of the two bodies under 
consideration:

where β1 and β2 = angles that the line joining the points on 
the two surface makes with their respective normals and L 
is the length of this line (Fig. 1); A1 ¼ 4πR2

1 = surface area 
of sphere 1; A2 ¼ 4πR2

2 = surface area of sphere 2.
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By writing

for the solid angle element subtended by the area dA2 at 
a point at dA1 and by interpreting

as an element of area perpendicular to the direction of the 
line joining the points near dA1 and dA2, which is the 
same as the direction of flight of a neutron (i.e., as the 
projection of the element dA1 in a plane perpendicular to 
Ω), we can rewrite the integral in Eq. (1) in the form

where the integration over Ω is over all directions (effec
tively those directions in which any ray intersects both 
spheres). Obviously, the transformation implied by 
Eqs. (1a) and (1b) leads to Eq. (2), but how do we 
physically interpret this transformation to proceed 
further? For this, we refer to Fig. 2a. The figure shows 
two spheres having radii R1 and R2 (R1 � R2) with cen
ters located at (0, 0, 0) and (0, 0, D) of the coordinate 
system (X, Y, Z). Since we are integrating first with 
respect to S, where S represents an area perpendicular 
to Ω, we fix a direction Ω [i.e., (θ; φ)] and project the 
spheres in a plane P perpendicular to Ω. The projections 
in the plane are circles.

Plane P is shown in detail in Fig. 2b. A coordinate 
system (x, y) [different from the original system (X, Y, Z)] 
is chosen in this plane such that the circles corresponding 
to spheres 1 and 2 are located at the origin and at 
a distance d away on the x-axis, respectively. We consider 
all possible rays in the direction Ω starting uniformly 
from the inside of circle 1, which is the projection of 
sphere 1. That is, we consider the cylindrical pencil of 
paths starting from circle 1 in direction Ω: Since we are 
interested in only those paths that begin from sphere 1 
and enter sphere 2 for the purpose of integration over S, it 
is clear that only those rays starting from the area that is 
common to the two circles in plane P contribute to the 
integral over S. In other words, the integral over S is 
simply the common area enclosed by these circles; i.e., 
it is the sum of the areas of regions S1 and S2, (as marked 
in Fig. 2b) denoted by S1 and S2; respectively.

To integrate over the direction variable Ω, we note that 
the area S1 þ S2 depends only on the azimuthal angle θ, and 
hence, this integration reduces to an integration over θ alone, 
and integration over φ simply contributes the factor 2π. Thus, 
we can write dΩ ¼ 2π sin θ. Since the integration over S is 
restricted to all rays in the direction Ω that pass through the 
first sphere and intersect the second sphere, it sets the upper 
limit of integration over the angle θ. Figure 3 shows the upper 
limit on the integration with respect to θ; namely, ψ2. Above 
this value of θ, there is no intersection with sphere 2, and the 
integrand is zero. Further, referring to Fig. 4, we see that for 
θ < ψ1, the projection of sphere 1 lies completely within the 
projection of sphere 2, and hence, for θ < ψ1, the integrand is 
a constant. Thus, the integration over θ splits into two parts, 
namely, from 0 to ψ1 and from ψ1 to ψ2 as discussed in 
greater detail in Sec. III.

III. CALCULATION OF THE VIEW FACTOR

For the case of two spheres, having radii R1 and R2 
(R1 � R2) with centers located at (0, 0, 0) and (0, 0, D), 
we can calculate the view factor by projecting the spheres 
in a plane perpendicular to the direction Ω of the rays. 
Each of the projections is a circle as shown in Fig. 2b. 
The integral over S, for the direction Ω, is given by the 
overlapping area of these circles. This area can be written 
as the sum of the areas of the shaded region (between the 
common chord and circle 1 and marked as S1) and the 
corresponding white (unshaded) region (between the 
common chord and circle 2 and marked as S2). When 
integrated over the direction variable Ω, we obtain the 
required quantity F1!2. The areas S1 and S2 may be 
calculated as follows.

D

R1
R2

L

β1

β2

Sphere 1 Sphere 2

Fig. 1. Illustration of the quantities appearing in the 
definition of the view factor in Eq. (1). It may be noted 
that the flight path and point of entry in sphere 2 are not 
necessarily coplanar with the centers of the spheres and 
the point of exit since Eq. (1) implies integration over all 
points of the surfaces of each of the two spheres. 
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Fig. 2. (a) Illustration of the method of obtaining the transformed integral for the view factor [Eq. (2)] in the (X, Z) plane. Sphere 1 has 
radius R1, and its center is at the origin while sphere 2 has radius R2, and its center is at (0; 0;D), i.e., at a distance D away from the 
origin on the Z-axis. Direction Ω (θ, φ) is chosen, and the spheres are projected in plane P perpendicular to Ω. The projections are 
circles, and d is the distance between their centers. In the case shown, the projections of the spheres have an overlapping area as some 
of the rays pass through both spheres. Integration over S [i.e., ò dS in Eq. (2)] is simply the area of this overlapping region. (b) A view is 
shown of the projection of the spheres in P (P is shown in the plane of the paper in this figure) for the purpose of calculating the 
overlapping area. A coordinate system (x, y) [different from the original system (X, Y, Z)] is chosen in this plane such that the circles 
corresponding to spheres 1 and 2 are located at the origin and at a distance d away on the x-axis, respectively. α and d-α are the 
distances of the line joining the intersection points of the circles from the centers of spheres 1 and 2, respectively. 
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Since in the system of coordinates chosen in plane P, 
the centers of the circles are located at 0; 0ð Þ and d; 0ð Þ, 
we may write equations for the circles as

To find the areas S1 (and S2), we need to know the 
distance between the center of circle 1 (circle 2) and the 
common chord, denoted by α (γ). The distance α is 
simply the x coordinate of the points of intersection and 

is obtained by solving Eqs. (3a) and (3b). The equations 
are easily solved by eliminating y2, and we get

Since d is related to the angle θ that the direction of the 
rays makes with the line joining the centers of the two 
spheres as follows:
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d

Fig. 3. Illustration of the angle ψ2, the upper limit on integration over θ. Beyond this, there is no intersection with sphere 2, and 
there is no overlap of the projections of the spheres: (a) is the representation in the X-Z plane and (b) is in the plane of projection P. 
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we can write

and since the distance γ ¼ d � α, we get

Thus, the two parts of the overlapping regions S1 and S2 
have areas given by

and

As may be seen from Eqs. (6) and (7), S1 and S2 depend on 
only θ and not on the azimuthal angle φ: We can write dΩ ¼
2π sin θ; and hence, the expression for the view factor 
becomes

where ψ2 is the maximum value of θ for which rays pass 
through both spheres. As may be seen from Fig. 3, this 
happens when

which gives

On the other hand, when

i.e., for 
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Fig. 4. Illustration of the limit ψ1 for the integration over 
θ. The integrand is constant between θ ¼ 0 to θ ¼ ψ1 and 
is simply the area of the projection of sphere 1: (a) is the 
view in the XZ plane and (b) is the view in the plane of 
projection P. 
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the first circle lies completely inside the second, as 
shown in Fig. 4, and hence, S1 þ S2 is a constant 
(namely, πR2

1Þ; and the integral from 0 to ψ1 is easily 
evaluated to give

Finally, the expression for F1!2 is obtained by adding the 
contributions to the integral from 0 to ψ1 and from ψ1 
to ψ2 :

Using π=2 � arcsinðα=R1Þð Þ ¼ arccosðα=R1Þ and 
π=2 � arcsinðγ=R2Þð Þ ¼ arccosðγ=R2Þ; we may write the 

integrals I1 and I2 as follows:

III.A. Spheres of Equal Radii

For the special case when R1 ¼ R2, γ ¼ α ¼
ðD sin θÞ=2 and S1 ¼ S2. Moreover, ψ1 ¼ 0 and ψ2 ¼

arcsinð2R1=DÞ; and the expression for F1!2 simplifies to

where a2 ¼ 2R1
D
� �2, and we have made the substitution 

u ¼ sin θð Þ=a. For a =1, that is, for two spheres of 
equal radii touching each other, it becomes an elementary 
integral, and we get the result

More generally, for nontouching spheres, the view factor 
F1!2 can be written in terms of the complete elliptic 
integrals of the first and second kinds as follows:

where

and

are complete elliptic integrals of the first and second 
kinds, respectively.
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III.B. The General Case

In the general case, since the integrand is a smooth 
function of θ, we can easily calculate it using Gauss quad
rature. The results using eight-point Gauss quadrature are 
shown in Table I. For the purpose of comparison, we also 
show the results obtained using the approximate formula 
given by Felske[1] and the formula obtained above for R1 ¼

R2 [Eq. (16)] using Wolfram alpha. Table I shows that the 
eight-point Gauss quadrature results are practically the 
same as the exact ones (wherever available) to the order 
of accuracy shown in the table. On the whole, this simple 
method yields results that are much better than those 
obtained using Felske’s approximate formula, particularly 
when the spheres are close to one another.

IV. CONCLUSION

We have reduced the four-dimensional integral giv
ing the view factor for two spheres to a one-dimensional 
integral over the polar angle with respect to the line 
joining the centers of the spheres. For two equal 

spheres, the integral yields a compact formula in terms 
of complete elliptic integrals of the first and second 
kinds. For the general case, accurate integration is easily 
performed using low-order Gauss quadrature. 
Calculations have shown that an eight-point Gauss quad
rature gives results that are close to the analytical results 
and are much better than Felske’s approximation widely 
used for this purpose.
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TABLE I 

The View Factors Calculated Using Gauss Quadrature for the General Case and Eq. (16) for R1 ¼ R2* 

R1 R2 D

F1!2

Felske’s 
Approximation Exact [Eq. (16)]

Eight-Point Gauss 
Quadrature

1 1 2 0.0717968 0:0755868 0.0755869
1 1 3 0.0294373 0.0295903 0.0295899
1 1 5 0.0102051 0.0102108 0.0102106
1 1 10 0.0025126 0.0025127 0.0025126
1 2 3 0.1310700 – 0.1374081
1 2 5 0.0421684 – 0.0422752
1 2 10 0.0101274 – 0.0101288
1 4 5 0.2020410 – 0.2097192
1 4 10 0.0418473 – 0.0418733
1 4 20 0.0101084 – 0.0101087
1 9 10 0.2827637 – 0.2899321
1 9 20 0.0535192 – 0.0535303
1 9 50 0.0081675 – 0.0081676

*For the purpose of comparison, we also show the results obtained using the approximate formula given by Felske. 
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