
using Eq. (1) and sharpened, without the help of Descloux's 
work, but rather by techniques like those developed by 
Perr in et al.10 and used, for instance, in Ref. 11. 

Kang and Hansen claim, of course, that their results 
confirm their theoretical analysis, but I could find nowhere 
in Part n of their work a numerical example where the 
approximation e r ror on the flux was analyzed in the L « 
norm (not even for the safe 1-D cases). Most of the 
results presented are in terms of the fundamental eigen-
value, which is essentially an integral parameter and for 
which, in 2-D and 3-D, the e r ror analysis should be 
performed, for the same reasons as above, entirely in the 
L2 or W1 norm, along the lines proposed at the end of 
Sec. IH.B.2. In this case, the authors would not have to 
conjecture, as they do, an extension of Theorem 7 to bound 
something that is practically always unbounded in the norm 
they have chosen, as pointed out in my next comment. 

2. In Part n , several choices of bivariate cubic basis 
functions are considered. Set A, in particular, for which 
30/3* and d<j)/dy are required to be zero at singular points, 
is presented as the "only simple way to satisfy the inter-
face condition" at such points. This choice, which inci-
dentally provides a poorly convergent approximation, is in 
complete contradiction to what should be well known from 
the works initiated by BabuSka and Kellogg more than two 
years ago (see, for example, Ref. 7): Namely, that 30/3* 
and 30/3y are actually infinite (and not zero) at singular 
points and that the behavior of 0 is in ra around these 
points with a comprised between 0 and 1. This points out 
once more that the use of Hermite-type elements long 
favored by numerical analysts is not necessarily the best 
choice for reactor problems that, unlike the smooth test 
problems usually studied by the same numerical ana-
lysts, exhibit characteristically piecewise constant mate-
rial properties. Actually, at the singularities, some of the 
parameters used in conjunction with Hermite elements 
completely lose their pointwise significance, and it could 
be more interesting for reactors with a fine structure, 
such as the pressurized water and boiling water reactors, 
to use Lagrange-type elements with static condensation 
techniques12 to minimize the size of the algebraic systems 
to be solved. 

3. In Table XV, the authors mention the possibility of 
using piecewise-constant elements for the spatial repre-
sentation. Although I believe the authors never intended to 
use them, I would like to point out that these elements are 
"nonconforming," or, in other words, that the space they 
determine is not a subspace of Wj(fi). Although noncon-
forming elements have been successfully used in several 
applications, convergence is usually subject either to the 
success of the so-called "patch t e s t " devised by Bazeley 
et al.13 and analyzed recently by Strang,14 or to the use of a 

10F. M. PERRIN, H. S. PRICE, and R. S. VARGA, Numer. Math., 
13, 180 (1969). 

11 J. P. HENNART, Nucl. Sci. Eng., 50, 185 (1973). 
12C. A. FELIPPA and R. W. CLOUGH, in Proc. Symp. Numer-

ical Solution of Field Problems in Continuum Physics, p. 210, 
G. BIRKHOFF and R. S. VARGA, Eds., American Mathematical 
Society, Providence, Rhode Island (1970). 

13G. P. BAZELEY, Y. K. CHEUNG, B. M. IRONS, and O. C. 
ZIENKIEWICZ, in Proc. Air Force Conf. Matrix Methods in Struc-
tural Mechanics, Air Force Institute of Technology, Wright-
Patterson, Ohio (1965). 

14G. STRANG, in The Mathematical Foundations of the Finite 
Element Method with Applications to Partial Differential Equa-
tions, A. K. AZIZ, Ed., Academic Press , New York and London 
(1972). 

finite element method with penalty as proposed by BabuSka 
and Zlamal15 in a quite recent work. 
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Response to "Comments on 'Finite Methods 
for Reactor Analysis '" 

The following remarks reply to the recent Letter by 
Hennart.1 

1. We believe our Theorem 7 of Ref. (2) is correct as 
stated, Hennart's comments notwithstanding. Hennart is 
correct in observing that the Sobolev imbedding theorem is 
valid only in one dimension, but since we make no use of 
the theorem, the comment is also irrelevant. Our theorem 
combines the er rors in the spatial and energy variables for 
diffusion problems. The result concerning the L x norm of 
the er ror in the spatial variable is not new; a similar 
result is given by Babuska and Kellogg.3 Our approach is 
different, and we add the energy variable, but we make no 
claim to a new result in the Lx norm. 

The fundamental problem seems to be one of notation. 
We assume the solution is in a space Cp, and t> 0. Indeed, 
solutions to multidimensional diffusion problems are in Cp-
At singular points 0 < t < 1, while at other points t» 1. 
Apparently Hennart has assumed we consider t to be only 
an integer, which is neither the case nor our intention. 

To clarify the situation we reproduce the proof below 
with the following assumptions: We assume a region of 
configuration space, O, divided into a finite number of 
subregions, , within which material properties are con-
stant. Properties may differ from region to region. We 
also assume the conditions specified in the statement of 
Theorem 7. Finally we assume that all mesh spacings 
converge, i.e., Ax = Cxh, Ay = Cyh, Az = Czh, AE=CEh, 
with the Ci independent of x, y, z, or E. Throughout the 
development we will use K,,i = 1, 2, . . . to mean a positive 
constant independent of h. 

The original problem can be written on the weak form as 
a(<t>,v) = (Q,v) , (1) 

and we seek an approximate solution 0 from the relation 

a($,vig) = (Q,vig) , (2) 

where 

vig = Ui(r)ug(E) for i = 1, 2, . . . , N; g = 1, 2, . . . , G . 

2J. P. HENNART, Nucl. Sci. Eng., 56, 225 (1975). 
2C. M. KANG and K. F. HANSEN, Nucl. Sci. Eng., 51, 456 

(1973). 
3I. BABU§KA and R. B. KELLOGG, in Proc. Conf. Mathematical 

Models in Computational Techniques for Analysis of Nuclear Sys-
tems, CONF-730414,Part II, Paper VII-67-93, U.S. Atomic Energy 
Commission (1974). 



By expanding * in terms of the vig we generate a system 
of equations of the form 

B* =q , 
where the matrix B is given in detail in Ref. (2). By the 
assumptions of the problem, B is positive definite and 
therefore B inverse exists. 

The truncation error in the approximation is given by 

£* - q = T , 
with * a column vector of the analytic solution evaluated at 
the mesh points. Now consider the case of a homogeneous 
system; 0 is then an analytic function and the truncation 
error t can be evaluated by Taylor series methods. By 
direct expansion it is easy to show, for our Hermite basis 
functions, that the t r u n c a t i o n error is 0(Ar2°!r+1) + 
0(&E2mE +1), where we have assumed the energy spectrum 
to be sufficiently differentiable. The pointwise error in the 
function, 0 - 0, is given by 

B(* - *) = r , 
so that 

I I * - • I L « I I b - 1 | | J | t I L . 
The norm o f B ' 1 is bounded by 0(l/k) as Hennart suggests. 
Further, our basis functions satisfy Descloux's4 coercive-
ness conditions to problems in three spatial dimensions, 
and we limit ourselves to, at most, 3-D problems. Thus, 

and not 2m r-l as suggested by Hennart. 
In the case of material discontinuities but no singular 

points, for example a two-region problem, we can still use 
Taylor series methods. However, the limits on the spatial 
portion of the truncation error become 0(Ar2). In general 
the bound is 0(A£2) for the energy variable also. 

The analytic solution is in class C1 and, from the pre-
vious results we have 

II* - *IL « 0(Ar) + 0(A£) , 
which is consistent with our Theorem 7. 

We now turn to the more realistic case of a problem 
with singular points. The method of proof is based on the 
triangle inequality as follows: From Eqs. (1) and (2) we 
have 

a(0 - 0 , Vig) = 0 . 

Let 0 be the Hermite interpolate of 0, and write the above 
as 

a(0 - = a(0 - 0,t>ig) . (3) 
The interpolation error is bounded as 

| |0 - 011^ ^ ^ A r ^ + ^ A E ^ t (4) 
with nr = min (2m,, tr), y.E = min (2mE, tE). The interpola-
tion theorem is valid for p.,, /iB > 0. Establishing the 
theorem in the energy variable is trivial since there is no 
differentiation and the slowing down kernel is bounded. For 
the spatial domain the interpolation theorem is classic for 
t s 1. For 0 < t < 1 the interpolation error bound is es-
tablished by the following lemma: 

For a function /(*)eC'[0,/z], with 0 < t < 1, and with 
/(0) =f(k) = 0, then 

I l/l loo « K*h' • 

4J. DESCLOUX, SIAMJ. Numer. Anal., 9, 260 (1972). 

We note that the interpolation error , 0 - 0, is indeed zero 
at x = 0,h. The fractional derivative of / is written,5 

The inverse operator p~' is defined such that p~'p'f =f and 
p~' can be written 

p-'g(x)=Ki £ f*dx'g(x') (x -x')' . 

We then have 

II* - * I L = Wp-'p'i* - 0 ) I L « l l r ' I L \ \P ' ( * - * ) I L , 
and, since 0, 0€C'[O,/j], we have 

| |p ' (0 - 0 ) 1 1 ^ • 
Thus, 

I I ^ I L ^ f M i r K e l L , = tfdx'K6(x-x')' , 

or 

II* - * I L « KtKsh' QED . 
By direct integration by parts, it is easy to show that 

(•(*(£) - *(£)) , V«,(«))n « K(E)Ar^ (5) 
for our basis functions, which are called "uniform" by 
Strang and Fix.6 Using Eqs. (4) and (5) it is easy to show 
that 

a(* - 0,i>) « K7Ari*r + KaAE^ . (6) 
Now define the quantity e(r,E) as 0 - 0 . The e(r,E) is 

thus a polynomial of degree 2m, - 1 in r and 2mB - 1 in E, 
and can be represented as 

G G 
e(r,E) = S E eigug(E) uM . 

g-1 <-1 
Then Eq. (3) leads to 

Be = K9 Ar^ + Ku AE^e ; 

where the composition of B is given in Ref. 2. Then 

e = B'lK3 Ar^+ B~iKio A E ^ . 
The vectors K» and Ki0 consist of a sum of two vectors. 

The first is composed of components with coefficients 
Ar2"" and AE2mE corresponding to the smooth solution. 
The second vector has coefficients AR'T and AE'E and a 
finite number of nonzero terms since there are only a 
finite number of singular points. This last term dominates 
the solution since t, < 2 m„ tE < 2 mE. The °° - norm of e 
is bounded as 

I lc II oo « WB^KsW^Ar'* + \\B-1Klo\\xAE'E . 
The norms consist of a finite sum of finite terms and hence 
the errors behave as Ar'r and AE'E as stated in Theorem 7. 
This completes the proof. 

Hennart questions the usefulness of a theorem which 
could not prove convergence in a finite element approxima-
tion. We too would question such a theorem, but since we 
believe our results to be correct there is no question of 
proposing a nonconvergent method. Finally, we used the 
Loo norm to obtain bounds because we thought the approach 

5R. COURANT and D. HILBERT, Methods of Mathematical 
Physics, Vol. II, p. 518, Interscience Publishers (1962). 

6G. STRANG and G. FIX, An Analysis of the Finite Element 
Method, p. 136, Prentice-Hall, Inc. (1973). 



the simplest. Our results are intended for use in the 
nuclear audience where interest is in eigenvalues, reaction 
rates, and flux distributions, not the pointwise behavior of 
the function. 

2. We cannot understand how our choice of Set A as an 
example of "the only simple way to satisfy the interface 
condition" can be interpreted as either implying that the 
true solution satisfies such a condition or advocating use 
of such a condition. A sizable portion of the text2 (partic-
ularly pp. 468-469) was given to discussing singular points, 
and we were and are well aware that the solution has an 
infinite first derivative as such points. It is not simple to 
satisfy infinite conditions at interfaces with either Hermite 
or Lagrange element functions. 

We proposed set A to demonstrate that poor convergence 
is obtained by using basis functions which satisfy improper 
continuity conditions. We thought the text and results made 
it clear that we used set A to demonstrate what not to do! 

With regard to using Lagrange elements we neither 
agree nor disagree with Hennart's recommendations of 

using them. We feel that it is an open question as to which 
is best. One is interested in Hermite methods so that 
continuity conditions can be imposed to reduce the number 
of basis functions and number of unknowns. Conversely, 
Lagrange methods do not require any special treatment at 
interfaces and perhaps, with static condensation, the num-
ber of unknowns can be reduced to as few as with Hermite 
basis functions. We know of no definite study on the sub-
ject. 

3. Hennart is correct in observing that piecewise flat 
element functions are nonconforming and probably should 
not be used in the weak form of the diffusion problem. 

C. M. Kang 
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