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Eq. (7) becomes: 

8' = - ^ JJ dEdE'<p(E)<p(E') 

(8) 

(Z2 2/ ~ Si S2')2 ^̂  

^ZzZi'Sz'CSi + S2) (Si7 + S2O = 

This completes the proof of (3). 
Another useful result is that a limit can be placed upon 

the difference between the extremes of (3). Defining 

yb ya Z 1(2,) - <1/2,r11 
^tr i ^tr t j = 1 6 = = N 

E U / S y T ' 
3= 1 

we see that e can be written in the form: 
N 

z <l/2,->-M<*,•><!/*,•> - 11 

e = J ~ * ® 
E d/Sy)-1 

j = 1 

from which it follows that: 

[<<ry><l/«ry> - l]min ^ 6 rg [<<ry><l/«ry> - l]m a x (10) 

where [• • -]min means that value of the bracketed quantity 
for that element in the mixture wrhich makes the quantity 
a minimum and [• • -Jmax has an analogous definition. 

An interesting application of these results involves the 
definition of 8D, the perturbation in the diffusion coefficient 
to be used in the calculation of a reactivity coefficient. We 
consider the unperturbed system to have a transport cross 
section S?r = a/E1/2, where a is a constant, and introduce 
a constant perturbation Str = 0.1 a. Calculating over an 
energy group, between limits of 1 and 2 Mev, and assuming 
for convenience a flux spectrum proportional to E~l, the 
following results are obtained: 

8D = -0.043 a~l 

8Da = -0.042 a~l 

8Db = -0.041 a - 1 

The quantity 8D was calculated exactly while 5Z)a and 
8Dh were obtained from (2a) and (2b) respectively. The 
expression for 8D, given in a report (unpublished) describ-
ing the AIM-6 Multigroup Diffusion Equation Code, 
8D = —DQ28(\/D) gives a result of 0.038 a~\ which is about 
12% too low. 
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Recursion Method for Calculating the 

Spatial Distribution of Resonance 

Absorptions 

Suppose that the angular and energy distribution of 
neutrons is known at the surface of a slab which has a 
single level Breit-Wigner resonance absorption cross section 
and a constant scattering cross section. We wish to calculate 
the spatial distribution of these neutrons absorbed in their 
first collision within the slab. 

Since the Breit-Wigner formula is symmetric about the 
resonance energy, only the symmetric part of the energy 
dependence of the surface flux will be relevant; let us assume 
that by some means this symmetric part has been expressed 
in powers of 

f(x) = (1 + (1) 

where x = 2 (E — E0)/T in terms of the resonance energy 
E0 and half width T (a formulation for calculating these 
components directly from the transport equation is cur-
rently being attempted). 

The angular dependence of each term can now be ex-
panded in powers of ju, the cosine of the angle between the 
direction of flight and the normal to the slab. For each 
resulting component of the vector flux, nl\pn, the absorption 
rate at a distance z within the slab is proportional to 

Ain(z) = 1 T dwl f00 dx[\p(x)]n+l 

r Jo J - x 
(2) 

•exp - - [So^Cr) + 2 j , 
M 

where Z0\p and 2S are the macroscopic absorption and 
scattering cross sections. Of most interest is Aoo , the ab-
sorption rate of a thin resonance when the surface flux is 
isotropic; this case has been treated asymptotically (1) 
for zero 2S . 

Rather than seeking closed form approximations, let us 
consider what would be practical for accurate numerical 
calculations. Since evaluating Ain(z) for all values of I, n, 
and z by any direct method certainly appears to be a 
prodigious task, it would seem worthwhile to search for 
simple relations between adjacent values: what is needed is 
a differential equation in the continuous variable z and 
recursion formulas in the discrete indices I and n. 

Thus, let us first consider Am . By letting t in Eq. (2) 
of ref. 2, p. 172 equal 2^—1, one finds that our integral 
over x equals irf (tp), where/(£) = a = 22 s /20 , 
t = 1/JJL, p = 20 2/2, a n d / 0 is a modified Bessel function 
(a relationship that has also been used by several authors 
previously). Changing the variable of integration from ju to 
t gives 

Aw(p) = r m ^ z . (3) 
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dAio(p) 
dp 

r- . dt 1 r- 1 

+ I + 1 f " , s dt 
I ^ 

(l + i ) A M - .HP) 

Once f(p) has been obtained, these simple first order dif-
ferential equations can be solved numerically for each I. 
Bessel's equation can be used to derive a differential equa-
tion that provides a rapid numerical method for deter-
mining/(p): 

/"(p) +^2 + 2 a a(2 + a) 

of equal powers of p, we obtain: 

a = 0, b = l/«, c = l/(8a) - (/ + | )A 2 if <*p » 1, 

(4) a = 1/(1 + §),& = (i)/(i + c = (Tj5)/(f + I) (11) 

if a = 0. 

Finally, it should be mentioned that if /(£) is generalized 
to a form that allows yj/(x) to be the Doppler broadened 
resonance function, Eqs. (3, 4, and 6) will still be valid. 

REFERENCES 
1. M . W A G N E R , Nuclear Sci. and Eng. 8, 2 7 8 - 2 8 1 ( 1 9 6 1 ) . 

2. G. N. W A T S O N , "Theory of Bessel Functions." Mac-
millan, New York, 1944. 

H A R V E Y J . A M S T E R 

Department of Nuclear Engineering 

(5) University of California 
Berkeley, California 

Received: October 30, 1961 

For higher values of n, Ain(p) can be obtained by dif-
ferentiating Eq. (2) : 

— 2Al,n\-l (p) = aAl,n(p) + A'l+I,n(p), (6) Treatment of Annular Voids in Diffusion Theory 

where, as in Eq. (5), the prime means a derivative with 
respect to p. Equation (6) can be used in conjunction with 
Eq. (4). For a given accuracy, the use of successively higher 
derivatives would, of course, severely limit the coarseness 
of the mesh size used, but since A in (p) vanishes very rapidly 
with p as n increases, high accuracy here is not really re-
quired. 

All that remains to be done is to find starting and possible 
ending solutions for Eqs. (4) and (5). We note first of all 
that the homogeneous solution to Eq. (4) is pm , which 
becomes infinite for large p and, therefore, must have a 
zero coefficient. For small p, multiplying the power series 
expansions for e~(1+a)p and 70(p) together gives 

f(p) = 1 - (1 + a)p + [}(1 + «)2 + IIP2 (7) 

Aio(p) = Bi+l(p) - (1 + a)Bi(p)p 

+ » ( ! + a)2 + }]i^-i(p)p2 

where the functions Bi(p) are defined: 

Bi(p) = 1 // if 1 * 0 

= — Inp if 1 = 0. 

For large p, the properties of 70(p) tell us that 

(8) 

/ ( P ) = 
1 

V2-7T p 

1 9 
1 + - + + 

8p 128p2 

By writing 

AM = e~af> 
V2Trp 

The usual one-dimensional multigroup diffusion codes 
can be used to calculate configurations with annular void 
regions by assigning a fictitious diffusion coefficient to the 
void region. The recipe is suitable for both infinite cylinders 
and spheres. Basically, the method is to calculate a diffusion 
coefficient for the void region which preserves the annular 
void boundary conditions consistent with the neutron 
streaming problem in the P-l approximation. 

In the cylindrical case, let us assume that the void region, 
ri ^ r ^ r2 , is characterized by some value of K2 = 2a/7) 
where 2a « D. Diffusion theory gives 

0v(r) = AIQ (icr) + BKo (ar) Ti S t ^ r>z (1) 

where <f>v(r) is the void neutron flux and 70 and KQ are the 
modified Bessel functions. For « 1, Eq. (1) becomes 

The power series expansion for Aio(p) can be obtained by 
inserting Eq. (7) into Eq. (4) and equating the coefficients 
of equal powers of p: 

4>v(r) = A + B In nr. (2) 

By differentiation, B can be expressed as r(d<£v/dr). Using 
the continuity of the neutron current across the interfaces 
at n and 7*2 , we have 

D V9^ /1 D \3r /2 
(3) 

where D\(Di) represents the diffusion coefficient for the 
region r < r\(r > r2), D is the void "diffusion coefficient" 
and the derivatives are evaluated for the diffusing regions 
at the void interfaces. Using Eqs. (2) and (3) and assuming 
continuity of the neutron flux at the interfaces gives 

(9) 

(10) 

4>(n) (4) 

inserting the expression in Eq. (4), and equating coefficients 

The P-3 approximation to the neutron streaming problem 
across an annular void in cylindrical geometry has been 
derived by Tait (1). Using only the P-l terms and assuming 
the diffusion approximation, i.e., that the net neutron cur-




