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Cored Metal Rod Multiregion Rod 

FIG. 4. Fuel element configurations for equal uranium 
content. Assumptions: Maximum allowable metal tempera-
ture = 1100°F. Maximum allowable oxide temperature = 
4000°F. Surface temperature = 750°F. 

2. From Fig. 1 it is seen that the maximum metal tempera-
ture at any given power generation rate is about 65°F lower 
for the multiregion element than for the cored metal ele-
ment. Using the data in Fig. 2, this indicates an increase in 
the maximum permissible burnup of about 25%. Thus a 
considerable improvement is obtained in the swelling 
limited burnup. 

Calculations have been made to determine the relative 
burnup of the four elements under consideration when 
limited by available excess reactivity. With a given total 
uranium content and a given enrichment—natural or 2% 
enriched—the burnup limits are the same for all elements 
except the solid oxide rod. The latter permits 5% to 25% 
less burnup under these conditions. Thus the multiregion 
element has no disadvantage with respect to reactivity-
limited burnup. 

The reactivity of a fuel element in a given lattice for any 
given enrichment will depend upon the total uranium con-
tent of the element. To determine the results of this effect 
on the multiregion fuel element, calculations were per-
formed to determine the maximum permissible uranium 
content at a given maximum metal temperature and power 
generation rate. The results are illustrated in Fig. 3 in 
comparison with the cored metallic rod. It can be seen that 
the multiregion element permits from 4% to 20% greater 
uranium content under otherwise identical operating con-
ditions. 

In the course of previous work at United Nuclear, esti-
mates of the effect of uranium content on reactivity were 
made for similar fuel elements. Then calculations were 
made specifically for the Sodium-Deuterium Reactor 
(SDR). Based on these data it is expected that a multi-
region element will have between 0.5% and 2.0% greater 
reactivity than a cored metal element of the same outside 
diameter, operating at the same power generation rates and 
maximum metal temperatures. One could take advantage 
of this gain in three different ways: lower enrichment, 
smaller core size, or lower refueling frequency if the burnup 
is reactivity-limited. 

It is also necessary to evaluate the effect of element 

geometry on reactivity to determine whether the above-
cited gains are actually available. For this purpose the 
four fuel elements shown in Fig. 4 have been used. They 
have equal uranium content. Calculation of the reactivity 
for an infinite lattice (Kx ) of such elements was made. The 
multiregion element does not differ appreciably from either 
the cored or solid metal element and is somewhat superior 
to the solid oxide element. The conclusions reached above 
regarding the greater reactivity of the multiregion element 
because of its greater uranium content are therefore sus-
tained. 
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Thermal Flux Disadvantage Factors for 
Slab Geometry 

It is the purpose of this note to point out that thermal 
flux disadvantage factors for slabs can be calculated accu-
rately by an extremely simple method. This method is based 
partly on blackness theory. 

In 1959, Maynard (1) proposed a method for the theoreti-
cal calculation of thermal disadvantage factors. This 
method was based only on blackness theory. The DBli 
approximation was reported to give the best results. How-
ever, this procedure is not simple for calculational purposes 
with the presently available tabulated functions. 

Recently, Theys (2) has given a simple expression for 
thermal flux disadvantage factors. Theys' treatment is 
based on the Integral Transport Theory, and on the argu-
ments put forward by Amouyal and Benoist. In Theys' 
notation, the flux disadvantage factor is given by Eq. (1). 

4>i/4>o = G + a2oc[Stir(6 - a) + 0.13] (1) 
where 

G = </>«/<£o. 

Here, and </>o are the average fluxes in the moderator 
region, and the fuel element respectively.^ is the neutron 
flux at the surface of the fuel slab. The subscripts 0 and 1 
refer to the fuel element and the moderator, respectively. 
The half thickness of the fuel (absorbing) slab and of the 
moderator region are denoted by a and (b — a). The fuel 
disadvantage factor is given by Theys as: 

( f i ) - ( S ) ' } <M 
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FIG. 1. Fuel disadvantage factor versus product of slab 
thickness and macroscopic total cross section. 

T A B L E I 

COMPARISON" OF F L U X D I S A D V A N T A G E FACTORS COMPUTED 
FROM T H E Y S ' M E T H O D , BLACKNESS T H E O R Y AND D S N 
( S - 8 ) FOR T w o V A L U E S OF THE H A L F THICKNESS OF A 
SLAB 

a = 0.5 cm a : = 1.0 cm 

2 a 2 j 
Tbeys' 
method 

Black-
ness 

theory6 
S-8 Theys' 

method 
Black-

ness 
theory" 

S-8 

0 . 1 

0.25 
0.50 
1.0 

1.435 
1.821 
2.616 

1.466 
1.863 
2.660 

1.475 
1.895 
2.722 

1.697 
2.345 
3.664 

1.729 
2.387 
3.708 

1.728 
2.384 
3.675 

0.3 
0.25 
0.50 
1.0 

1.338 
1.639 
2.261 

1.363 
1.671 
2.294 

1.371 
1.697 
2.343 

1.542 
2.047 
3.077 

1.567 
2.079 
3.110 

1.565 
2.080 
3.093 

0.5 
0.25 
0.50 
1.0 

1.242 
1.458 
1.905 

1.259 
1.480 
1.927 

1.266 
1.499 
1.963 

1.387 
1.749 
2.487 

1.405 
1.770 
2.509 

1.403 
1.772 
2.497 

a In all cases Vm/Vf = 2.0 and s! r = 2.33 cm"1 . The 
subscript zero refers to the fuel element. 

b The flux disadvantage factors were computed from 
Eq. (4). 

Without any approximations used in Theys' derivation 
of the fuel disadvantage factors, we evaluate Theys' Eq. 
(4) by blackness theory (5). We get for G 

G = aZ0c/a, ( 3 ) 

where a, the ratio of the current to the flux at the surface 
of the fuel slab, is computed by blackness theory. Using 
Eq. (3) and Theys' argument (for the moderator region), 
we get the following expression for the flux disadvangage 
factor, 

4»/4>o = a20c ^ + 2i r (b - a) + 0.13J. (4) 

It is obvious from Eq. (4) that, once aS 0 c / a is known, 
thermal utilization factors are trivial to calculate. In 
Fig. 1, a set of curves is given for a S 0 c / « versus 2a20T for 
2OS/2OT = 0.1 to 0.9 in steps of 0.1. We have computed1 

these curves from Maynard's (1) tables. However, a can 
also be computed from Eq. (5) using the capture fractions 
Fo and Fi , as tabulated by Schiff and Stein (4) 

a(aZ0c, Sos/SoT) - 2 1 / _ ! F i ] . (5) 

In Maynard's notation (J), 

Fn = 1 - (n + 2) (Rln + Tin). 

In Table I, the calculations of flux disadvantage factors, 
based on the proposed method (Eq. 4), are compared with 
those performed with Theys' method and the S-8 method 
(5). In all the S-8 calculations, the number of mesh inter-
vals was taken to be sixteen and twenty-six for the fuel 
element and the moderator region. The parameter specify-
ing the convergence criterion, e, was set equal to 10~4. It 
is clear from Table I that this extremely simple method 
gives more accurate results than Theys' method. This 
better agreement with the S-8 calculation arises from the 
fact that the values of G computed from Eq. (3) are larger 
(and more accurate) than those calculated from Theys' 
method. It is to be noted that the only difference between 
our method and Theys' method is in the evaluation of the 
fuel disadvantage factor. 

The author is thankful to Dr. W. Zernik for a stimulating 
discussion. Helpful discussions with Dr. C. W. Maynard 
are also gratefully acknowledged. 
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Slowing Down with Anisotropic Scattering 

The technique of expanding Laplace transforms in a 
series of the transform variable before inversion was ap-
plied in an earlier paper (1) to determine the flux obtained 
from an energy distributed neutron source in an infinite 
homogeneous system. This method is capable of extension 
to slowing down when the differential scattering cross sec-
tion of the nuclei is anisotropic in the center of mass sys-
tem. We will assume that the angular distribution of scat-
tered neutrons is independent of the initial energy and will 
also omit extraneous complications, such as absorption, in 
order to give a simple outline of the main feature of the 
problem. 

The angular distribution of scattered neutrons is as-
sumed to be given by g(m) where /x is the cosine of 0, the 
scattering angle in the center of mass system. In terms of 
the initial and final lethargies u' and u, 

2 ( . 1 + a fJL = z - • 1 - a 1 - a ' 

where a is the maximum fractional energy loss on a collision. 
The neutron balance equation in the lethargy interval 

du at u is 

S 8 ( w ) 0 ( M ) 
J u—u v 

2s(u')<t>(u') 

du' 
-gin) : + SM 1 — a 

(1) 

1 
1 - K(p) 

£{S(u)} (2) 

where 
rUm /l l \ du 

Jo V 5 J l - a 

i r1 
= - J [1 - 5(1 - v)]pgb) dfx 

(3) 

1 
+ 7 OA + 71 AP + 72 AP2 + 1 - Kip) u p 

where £A and ynA are constants to be determined. 

Inverting Eq. (2) gives 

2s(u)(j>(u) 

= ~ f SW du' + 7OA S(u) + 71A S'(u) + 
SA JO 

Defficients in Eq. (4) are 1 

= lim - r 1 - 7 ~ - — 
P^opn\l-K{p) Up 

(4) 

The coefficients in Eq. (4) are found from the relation 

' 70A — JlA p — — 7/I-L.A Pn 

with 

Thus 

— = lim ^ 
1 

SA p^ol - K(p) K'(0) ' 

(n + 2)! C(0) ^ (n + 1)! 

71A WHO) _ Jn-l.A uaK"(0)1 
21 J 

(5) 

where from equation (3) we have that 

1 r1 
KM(0) = - J {In [1 - 5(1 - M)] Yg(n) dfx. (6) 

where <f>(u) is the flux, 28(w) the scattering cross section, 
and S(u) the source, all at lethargy u, and um = l n ( l / « ) . 
Taking the Laplace transform of Eq. (1) and rearranging 
terms we find 

The logarithm in the integrand of (6) can be expanded 
in powers of 8 to any required accuracy, thereby determin-
ing the coefficients in Eq. (4) for any scattering material. 
For all but the lightest nuclei it will be found adequate to 
retain only the terms of 0(82) in Eq. (6) and the first two 
terms of the series in Eq. (4). 

As an illustration we now treat the simplest problem of 
a heavy scatterer for which a —> 1. We may therefore neg-
lect terms 0(82) and take 8 = the average logarithmic 
energy decrement for isotropic scattering. 

Equation (6) now gives 

/C<r>(0) git*) du 
(7) 

= ( - l ) T ( l -M) r 

where the bar denotes the mean value. Substituting from 
(7) into (5) and rearranging the terms, 

(1 - M)2 ^ (1 — //.)n+i 
7„A(1 - M) — £yn-i,A———H f-(-l)"£n7oA-7——77-2! (n + 1)! 

= ( - D " 
(1 - n)n 

(8) 

and 8 = J(1 — a). 
The normalizing condition on g{p) is Jl_i g(p.) dp = 2 

which is equivalent to K(0) = 1. Thus the expansion of 
{1 — K(p) J-1 in powers of p is 

( n + 2 ) ! (1-M) ' 

For a heavy scatterer the first two coefficients in the ex-
pansion (4) are thus 

£A = - a) 

_ 1 - 2A + M2 (9) 




