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Fic. 2. Variation of free surface velocity with liquid
level in tank. Ly = Ly = H;n = 0; F = 0.

for the selected pressurization, an area ratio of 1:4 produced
a rate of drop in liquid level approximating free fall. The
terminal flow approximation is in this case rather poor even
for small area ratios.

The effect of friction on the system was observed by
arbitrarily setting F = 3, which represented a friction loss
of three drain pipe velocity heads. It was noted that the
velocities for corresponding area ratios were smaller and
that terminal flow was established sooner. Although termi-
nal flow was a better approximation to true flow, it was not
a satisfactory approximation, for moderate area ratios, of
the early stage flow.

The effect of drain pipe length on the development of
flow was observed by considering a configuration having a
small area ratio typical of a water tank with drain pipe
attachment. An area ratio of 0.01 was selected, and the
velocity-displacement relationship plotted for lengths of
drain pipe of zero, H, and 5H. The curves indicated, in
common, that the inertia transient was completed and ter-
minal flow started when the maximum rate of flow had been
more or less attained.

In examining the development of flow when a very long
drain pipe, equal to 5H, is attached to the tank, it is found
that the peak velocity is not attained until about half the
tank has been drained. This indicates that a long drain pipe
produces a long inertia transient, and that computations of
discharge based on the prevailing head lead to incorrect
results—even when the area ratio is small. When the drain
pipe is of moderate length, equal to H, then the peak ve-
locity is reached when less than one-thousandth of the
volume of liquid has been drained. In this case, it can be
assumed, for practical purposes, that terminal flow is estab-
lished immediately.

It is fairly apparent that to obtain the rapid drainage
required for scramming a reactor it is necessary to have a
large discharge area. Rather than use a very large pipe or
group of pipes, it is expedient to use an annular weir dis-
charge. In this arrangement the length of the drain pipe
L = L; + L, is essentially zero. The solution of Eq. (2),
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disregarding pressurization and friction, is
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For the ratio B = 1/4/2, Eq. (5) becomes
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As 1/4/2 is a very large area ratio, it is well represented in
the early stage flow by free fall. An interesting feature of
the flow, with no drain pipe length, is that the initial ac-
celeration at which the level in the tank falls is always ¢
regardless of the height of liquid in the tank or area of dis-
charge.

The time required for the complete draining of the tank
when R = 1/4/2 is obtained bo integrating Eq. (6). The
definite integral is

1
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where 2 = 1 — (y/H). It is found from the above equation
that until about three-tenths of the tank has been drained
the time-displacement relationship is practically that of
free fall. The divergence becomes more significant as the
draining of the tank nears completion. To complete the
draining, 25% more time is required than the time it takes
for a body to fall freely through this distance. Terminal
flow in this ease is not at all representative of the true state
of affairs.
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Plastic Bending of Rods or Tubes with Radial
Temperature Distributions

Horizontally loaded reactor fuel elements are subject to
bending stresses which may limit the distance between fuel
element supports. Since these fuel elements have radial
temperature distributions, standard (1) methods of plastic
analysis cannot be used to determine the deflections. This
note contains the equations necessary to extend existing
methods of plastic bending analysis to cases of rods or tubes
with radial temperature distributions.

Assuming plane sections perpendicular to the neutral axis
remain plane after bending, the equation relating the axial
strain, ¢, and the curvature, B (Fig. 1), is

2 r sin 6

R R
where r is the distance from the center; z, the distance from
the neutral axis; and 8, the angle between r and neutral axis.
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Fi1a. 1. Notation for a circular cross section

For small deflections, the radius of curvature is related to
the deflection of the neutral axis, y, and the axial dimen-
sion, x, by 1/R = d?y/dx? Isochronous creep test results or
tensile test results interrelating stresses, o, and strains, e,
can be described by a power function of the following form:

€= A(T)o" or o = (e/A)Vn @)

where A(T) is a function of the temperatures. Since the
temperature, T, is a known function of the radius, A can be
written as a function of the radius, 7.

For a tube of thickness dr and radius r, the moment con-
tribution for the curvature R is

/2
dM =4 f o(r sin O)rd 6 dr (3)
0

Substituting for ¢ from Eq. (2), for ¢ from Eq. (1), and in-
troducing the approximation for the radius of curvature
yields the incremental moment equation. The total moment
is obtained by integrating the incremental moment equa-
tion with respect to the radius, r. The resulting moment-
deflection relation is

Ro

M(z) = [ dM = By")'", @
R,

where R; is the inner tube radius (R, = 0 for a rod); R, ,

the outer tube radius; and
Ry t/n
< L) r2 dr.
z, \4

o {1+ 1/2n)
Tl + (n+ 1)/2n]
The function B is independent of the bending conditions
within the rod and is a function of the power dependence of
the stress-strain relations and the radial dependence of the
material parameter, A. Thus, for any particular problem
B is a constant and Eq. (4) can be integrated to obtain the
deflections.
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A simply supported beam of length L with a uniform
load w has the following moment distribution, M :

M= (w/2) (Lx — z?) (5)

where z = distance from a support. Solving Eq. (4) for
the second derivative of the deflection

= (M/B)".

Substituting in the moment distribution (5), integrating,
and evaluating boundary conditions yields:

w\» L2 L2
| Y |max = <_) f dxf (Lt - t2)" dt
2B o z
w\r L2
={— 2(Lx — 28" dz.
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When # is an integer
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Note on the Thermal Neutron Spectrum in a
Diffusing Medium!

A paper by Hurwitz and Nelkin (1) considers the energy-
dependent thermal diffusion equation in a region free of
external sources. Hurwitz and Nelkin consider two similar
cases:

(a) The steady-state diffusion of neutrons from a thermal
plane source in an infinite medium and

(b) The time-dependence of the thermal flux following a
pulse of fast neutrons.

The present authors have misgivings concerning the basic
assumption of flux separability made in the Hurwitz and
Nelkin paper which they feel may not be correct. In case (a),
it is assumed [see Eq. (9) of ref. 1] that ¢(r, E) = Q,(r)-
¢.(E). In case (b) {see Eq. (13) of ref. 1], the assumed
o(E, 1,t) = $2(E)Qp(r)-e™™ where X is explicitly taken to be
independent of energy.? We wish to make the following
comments:

Case (a). Consider a strong absorbing medium in which

* This communication has been presented by one of the
authors (G. de Coulon) to the faculty of the University of
Michigan, in partial fulfillment of the requirements for the
degree of Master of Science.

2 This treatment is also followed in a later paper by M.
Nelkin (J. Nuclear Energy 8, 48 (1958)).





