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FIG. 3. Log AR2 (in a rb i t ra ry uni ts) as a funct ion of dis-
tance R (in cm) in pure water . A Phosphorous detector 
(above 1 Mev) . O Ind ium detector (1.46 ev). — Theoret ical 
curve for phosphorous detector using the Goldstein et al. 
calculat ions. 

and 3 mm thick. Indium detectors , used to detect resonance 
neu t ron flux (1.46 ev), were of the same cross-section area 
and 0.12 mm thick. 

T h e sa tura t ion ac t iv i ty A of the foils was measured as a 
func t ion of dis tance R t aken f rom the center of the t a rge t 
tube . Figure 2 shows curves of log AR2 ( relat ive values) as 
a funct ion of dis tance R obta ined with In and P detectors 
in 6-in. P b + H 2 0 medium. I t is seen t h a t more than 60 cm 
f rom the source, the ra te of a t t enua t ion of the two curves 
is about the same. This is in agreement with t he theoret ical 
predict ions (3) t h a t a t large distances f rom the source, flux 
a t all energies will fall off, apa r t f rom a geometrical fac tor , 
as exp( — N<rtIR), where N<ru is the macroscopic t r anspor t 
cross section and E is the source energy. Assuming the neu-
t ron flux to fall off as [exp(— R/L)]/R2, t he value of relaxa-
t ion length L between 60 and 70 cm was found to be 
13.6 ± 0 . 5 cm. Figure 3 shows similar curves in the case of 
pure water . As in Fig. 2, a t large distances the ra te of a t -
t enua t ion of P and In curves is about the same. T h e solid 
curve in Fig. 3 represents the expected theoret ical response 
of a P detector based on the results of Goldstein et al. (4). 
In the i r t r ea tmen t , using the moments method to solve the 
Bol tzmann equat ion, the energy spect rum of neut rons as a 
func t ion of dis tance has been obta ined f rom a 14.03 Mev 
source in w-ater. T h e cross-section curve for the P31(ra, p)Si31 

react ion (5) as a funct ion of energy was in tegra ted over t he 
theoret ical curve a t different distances. T h e curve thus ob-
ta ined represents the expected theoret ical response of a P 

detector f rom a 14.03 Mev source in water . T h e experi-
menta l points have been normalized with the theoret ical 
curve a t 17.5 cm. I t is seen t h a t experimental points higher 
t han 45 cm lie above the theoret ical curve. This has also 
been observed in the dose measurements by Caswell et al. 
(1). T h e accuracy of the theoret ical calculations is es t imated 
by the au thors as 15%. There is an inaccuracy of about 8% in 
t he determinat ion of P 3 1(«,p)Si 3 1 cross section and the 
values between 10 Mev and 14 Mev have not been measured. 
For the present calculat ion the cross-section curve was 
joined smoothly between 10 Mev and 14 Mev. I t was also 
noticed t h a t a var ia t ion of 10% in the cross section in this 
region caused a negligible change in the slope of the theo-
retical curve. Between 60 and 70 cm, t he relaxation length 
L of the theoretical curve was found to be 15 cm. An uncer-
t a i n t y of about 2 cm in the de terminat ion of the exact 
center of the ta rge t was present in all the measurements . No 
correction has been made for the change in flux caused by 
the presence of t he a luminum tube (3.8 cm diameter) used 
to br ing in the deuteron beam. 

T h e authors are grateful to Messrs. J . N . Soni, V. Singh, 
and M. L. Barde for their un t i r ing assistance th roughout 
the course of this work, and to Dr . R . R a m a n n a for his 
help a t all s tages. 
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The Inertia Transient in Reactor Draining 
In analyzing the problem of reactor draining, or of t ank 

dra in ing in general , three types of t r ans ien t s may be taken 
in to considerat ion. T h e most rapid of these t rans ien ts , 
which includes iner t ia and compressibi l i ty effects, is t he 
sonic t r ans ien t . An in te rmedia te t rans ien t is obta ined by 
disregarding compressibi l i ty and tak ing into account only 
the iner t ia of the fluid, and is te rmed here the iner t ia t r an -
sient . The slowest of the t rans ien ts results f rom disregard-
ing both compressibi l i ty and iner t ia effects and assuming 
t h a t the ra te of discharge is governed only by the prevail-
ing head. I t is designated as te rminal flow, since it charac-
terizes the te rminal phase of the iner t ia t r ans ien t . 

The order of magni tude of t ime involved in reactor d ra in-
ing problems, arising f rom reac tor control or reactor sa fe ty 
studies, requires t h a t cognizance be t aken of t he iner t ia 
t r ans ien t . The resul ts presented here have appl icat ion in 
the design of reactor control , or reactor scramming sys tems 
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FIG. 1. Tank and drain pipe arrangement 

which depend upon the draining of moderator or reflector 
liquid, and they may be of use in the evaluation of reactor 
hazards resulting from the loss of coolant or other reactor 
liquid. 

A general s tudy of the inertia transient in a conservative 
mass and energy system is discussed elsewhere (1). The 
present system is nonconservative. 

The system consists of a large pressurized tank from 
which liquid drains through a pipe having a vertical and a 
horizontal length. I t drains under the influence of gravity, 
assisted in some cases by a gas pressure on the surface of 
the liquid. Figure 1 shows the arrangement of tank and 
drain pipe. Proceeding in a manner similar to tha t used in 
reference 1, the summation of forces on the slugs of liquid 
in the t ank and pipes, together with the energy and con-
t inui ty relationships, at the junction of pipe and tank re-
sults in the equat ion: 

L + -" ~-d2x 

In the above R = Ai/Ai and nH = Pn/w. 
The solution of Eq . (1) with the inertia term d2x/dt2 = 0 

is the solution of the well-known tank draining problem in 
which the discharge is governed by the momentary head 
and the inertia of the fluid to a change in velocity is disre-
garded. I t is a close approximation of the flow for the case 
when both the area rat io is small and the length of drain 
pipe is small. Under zero inert ia conditions, the solution to 
Eq. (1) in terms of the y coordinate, or liquid level in the 
tank, is 

7 a = 
2g(n + 1 )H + L, -

1 + F - R2 (3) 

Equation (2) has four parameters in addition to the inde-
pendent variable y/H. The effect of these parameters will 
be examined separately. Consider first the solution when 
the drain pipe lengths Li = L2 = H, when there is no pres-
surization, and the friction forces are neglected. Equat ion 
(2) becomes 

V/i _ R2(2 + 2R - 3R2) 
2gH = (1 - R2){ 1 - 2R2) 

R 
2 + R 

H -
y i - s W j 

y 
H 

v 
H ' 

R2 (4) 

1 - 2R2 

I t is expressed in terms of x, the displacement of a par-
ticle in the drain tube, but could be expressed jus t as readily 
in terms of the drop of level in the tank, y, by use of the con-
t inui ty equation Aiy = A,x. In deriving the above equa-
tion, P02, the pressure at the end of the drain pipe has been 
assumed to be atmospheric (zero gage). In Eq. (1), L = 
Li + L t and F represent the number of velocity heads lost 
through pipe friction and would include entrance, exit, 
bend, and valve losses in addition to the s traight pipe 
losses. 

Equat ion (1) is a nonlinear differential equation with 
variable coefficients. The first integral, in terms of the tank 
level y, is obtainable, however. I t gives the free surface 

Equat ion (4) is plotted in Fig. 2 for several ratios of drain 
pipe area to tank area. 

A free-fall curve, which is included for comparative pur-
poses, shows the velocity of a free falling body, dropped 
from a height H. I t is the special case of R = 1 and L2 = 0. 
The curves in Fig. 2 show the rate of fall of the liquid surface 
in the tank to decrease with decreasing area ratio. The 
range in which the flow is governed primarily by inert ia 
forces also becomes smaller with decreasing area ratio. 
This may be observed through the increasingly early blend-
ing of the t rue flow curves with the terminal flow curves as 
the area ratio becomes smaller. The dotted terminal flow 
curves are plotted from Eq. (3). These are seen to be fair 
approximations of the terminal phase of flow. 

When the area ratio is quite large, as, for example, when 
R = 1/2 the velocity-displacement curve shows tha t the in-
ert ia forces primarily determine the character of the flow. 
For large area ratios the velocity-displacement curves re-
semble the free-fall curve and any approximation with 
terminal flow would not be valid. Note tha t the t rue ve-
locity-displacement curves indicate, properly, t ha t the ve-
locity s tar ts at zero and builds up, while the terminal flow 
curves indicate, incorrectly, t ha t at the s ta r t of flow the ve-
locity is V = (2gHyi2. 

The effect of pressurization was examined by let t ing 
n = 10 and Li = L2 = H . The resulting curves (not shown 
here) indicate t h a t a rate of drop in liquid level, in excess 
of the free-fall rate, is easily obtained. I t was observed tha t 



disregarding pressurization and friction, is 

I I 
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For the rat io R = l / - \ / 2 , E q . (5) becomes 

_V, 
2 gff 

(6) 

As l/\/2 is a very large area ratio, i t is well represented in 
the early stage flow by free fall. An interesting feature of 
the flow, with no drain pipe length, is t ha t the initial ac-
celeration a t which the level in the tank falls is always g 
regardless of the height of liquid in the tank or area of dis-
charge. 

The time required for the complete draining of the tank 
when R = l / \ / 2 is obtained bo integrating Eq. (6). The 
definite integral is 

0.7 0.8 0.9 i.o 

—= Relative Liquid Level H 

FIG. 2. Variation of free surface velocity with liquid 
level in tank. U = L2 = H; n = 0; F = 0. 

for the selected pressurization, an area ratio of 1:4 produced 
a rate of drop in liquid level approximating free fall. The 
terminal flow approximation is in this case ra ther poor even 
for small area ratios. 

The effect of friction on the system was observed by 
arbi trar i ly sett ing F = 3, which represented a friction loss 
of three drain pipe velocity heads. I t was noted tha t the 
velocities for corresponding area ratios were smaller and 
tha t terminal flow was established sooner. Although termi-
nal flow was a bet ter approximation to t rue flow, it was not 
a satisfactory approximation, for moderate area ratios, of 
the early stage flow. 

The effect of drain pipe length on the development of 
flow was observed by considering a configuration having a 
small area ratio typical of a water t ank with drain pipe 
a t tachment . An area ratio of 0.01 was selected, and the 
velocity-displacement relationship plotted for lengths of 
drain pipe of zero, H, and 5H. The curves indicated, in 
common, tha t the inertia t ransient was completed and ter-
minal flow started when the maximum rate of flow had been 
more or less a t ta ined. 

In examining the development of flow when a very long 
drain pipe, equal to 5H, is a t tached to the tank, it is found 
tha t the peak velocity is not a t ta ined until about half the 
tank has been drained. This indicates tha t a long drain pipe 
produces a long inert ia t ransient , and tha t computations of 
discharge based on the prevailing head lead to incorrect 
results—even when the area ratio is small. When the drain 
pipe is of moderate length, equal to H, then the peak ve-
locity is reached when less than one-thousandth of the 
volume of liquid has been drained. In this case, it can be 
assumed, for practical purposes, t ha t terminal flow is estab-
lished immediately. 

I t is fairly apparent t ha t to obtain the rapid drainage 
required for scramming a reactor it is necessary to have a 
large discharge area. Rather than use a very large pipe or 
group of pipes, it is expedient to use an annular weir dis-
charge. In this arrangement the length of the drain pipe 
L = Li + L2 is essentially zero. The solution of Eq. (2), 

T = (H/V2gH) f z-t'l-ln z]"2 

Jo 
dz 

w r(i/2) 
(1/2)1/2 (v ) ' 

(7) 

where z = 1 — (y /H) . I t is found from the above equation 
tha t until about three-tenths of the tank has been drained 
the time-displacement relationship is practically t h a t of 
free fall. The divergence becomes more significant as the 
draining of the tank nears completion. To complete the 
draining, 25% more time is required than the time it takes 
for a body to fall freely through this distance. Terminal 
flow in this case is not a t all representative of the true s ta te 
of affairs. 
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Plastic Bending of Rods or Tubes with Radial 
Temperature Distributions 

Horizontally loaded reactor fuel elements are subject to 
bending stresses which may limit the distance between fuel 
element supports. Since these fuel elements have radial 
temperature distributions, s tandard (1) methods of plastic 
analysis cannot be used to determine the deflections. This 
note contains the equations necessary to extend existing 
methods of plastic bending analysis to cases of rods or tubes 
with radial temperature distributions. 

Assuming plane sections perpendicular to the neutral axis 
remain plane af ter bending, the equation relating the axial 
strain, e, and the curvature , R (Fig. 1), is 

r sin 6 
R R 

where r is the distance from the center; z, the distance from 
the neutral axis; and 6, the angle between r and neutral axis. 




