
For the three-group method, the parameters given by 
Eqs. (CI), (C2), and (C3) were calculated for three broad 
energy groups. Group 1 covers energy range 10 MeV to 
111 keV, g = 1 to 18. Group 2 covers energy range 111 keV 
to 5.53 keV, g = 10 to 30. Group 3 covers energy range 
5.53 keV to 47 eV,g = 31 to 50. 
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I. INTRODUCTION 

In recent publications1"7 the methods of flux synthesis 
have been applied to the approximate solution of the 
linear Boltzmann equation for neutron transport . Prac t i -
cal resul ts have been presented for several monoenergetic 
slab problems1"6 and for multigroup crit ical slab prob-
lems.7 A survey of the methods developed in the last few 
years is given in Ref. 8. This paper presents some 
methods for the solution of the multigroup Boltzmann 
equation for slab geometry with inhomogeneous boundary 
conditions ,9 The methods a re based on half-range expan-
sions of the unknown solution in known functions of the 
angle variable, in known functions of the angle and the 
energy variable, in known functions of the space variable, 
or in known functions of the space and the energy variable. 
The unknown functions of these expansions a re determined 
by the "method of weighted residuals,"1 0"1 2 which yields 
reduced multigroup problems when the unknown solution 
is expanded in functions of the angle or the space variable, 
and reduced one-group problems when the solution is 
expanded in functions of the energy variable also. The 
reduced equations a re systems of linear f i r s t -o rder dif-
ferential equations or systems of Fredholm integral equa-

1G. C. POMRANING and M. CLARK, Jr. , J. Nucl. Energy, 18, 
191 (1964). 

2S. KAPLAN and J. A. DAVIS, Trans. Am. Nucl. Soc., 9, 196 
(1966). 

3S. KAPLAN, J. A. DAVIS, and M. NATELSON, Nucl. Sci. Eng., 
28, 364 (1967). 

4H. S. ZWIBEL, Trans. Am. Nucl. Soc., 10, 213 (1967). 
5H. S. ZWIBEL, Trans. Am. Nucl. Soc., 11, 174 (1968). 
6H. S. ZWIBEL and B. BOWES, Nucl. Sci. Eng., 36, 435 (1969). 
7M. J. LANCEFIELD, Nucl. Sci. Eng., 37, 423 (1969). 
8M. L. STEELE, Reactor Technol., 13, 73 (1970). 
9W. SCHWETJE, "Modale Entwicklung der Neutronentrans-

portgleichung fur ebene Geometrie ," KFK-1223, Kernforschungs-
zentrum Karlsruhe (1970). 

10G. C. POMRANING, Nucl. Sci. Eng., 24, 291 (1966). 
n W . M. STACEY, Jr. , Nucl. Sci. Eng., 28, 438 (1967). 
1 2E. L. FULLER, "Weighted Residuals Method in Space D e -

pendent Reactor Dynamics," ANL-7565, Argonne National Labo-
ratory (1969). 

tions of the second kind with degenerate kernel which 
are solved numerically. 

II. FLUX SYNTHESIS 

Assuming isotropic scattering in the LS and treating 
the energy dependence in the multigroup model,13 the 
Boltzmann equation for slab geometry without independent 
volume sources is given by Eq. (1) 

M ^ / W ) + < r f (* ) /W) = I S a?'£/(x,nW 

g= 1, 2, . . . ,G . (1) 
The boundary conditions, Eqs. (2), describe the incident 

neutron fluxes on the left-hand and right-hand sides of 
the slab, respectively. 

f(0,n) = rf(ju) 0 < n <= 1 (2a) 

/ f y , n ) = r r f y ) - 1 < ^ < 0 g = l ' 2 ' • • • 'G ' {2b) 
Below we always assume that 

r f o ) s 0 , (3) 
that is, we only t reat problems with incident neutrons 
on the left-hand side and homogeneous boundary conditions 
on the right-hand side. The notation is 

d = slab thickness 

x = spatial variable 

li = cos 8 

9 = angle between x axis and direction of the neutrons 

af = total macroscopic cross section in group g 

a f ' = a£« + vX'aj 

crlcg = macroscopic cross section for scattering from 
group jto group g 

v = mean number of fission neutrons 

Xs = fission spectrum 

aj = macroscopic fission cross section in group j 

A. Boundary Conditions 

Setting 

f(x,n) = f°(x,ii) + f\x,n) , (4) 
where fg0(x,jj) describes the uncollided neutron flux in 
g roups , we obtain Eq. (5) for/®°(«,Ju). 

nj-f*>(x,n) + ff?(*)/«°<*,M) = 0 g = 1, 2 , . . . , G . 
(5) 

The uncollided flux fg0(x,ij.) sat isf ies the inhomogeneous 
boundary conditions, Eqs. (2), whereas the scattered flux 
fgi(x,ji), which includes the fission neutrons, sat isf ies 
homogeneous boundary conditions. The solution of Eq. (5), 
taking into account the boundary conditions Eqs. (2) and 
(3), is given by Eq. (6) 

(rf(M) exp[- fxof(x')dx' • m"1] 0 < n < 1 
fg°M = lJo J 

(0 . (6) 

13H. HUSCHKE et al. , "Gruppenkonstanten fur dampf- und 
natrium-gekiihlte schnelle Reaktoren in einer 26-Gruppen-Darstel-
lung," KFK-770, Kernforschungszentrum Karlsruhe (1968). 



For the sca t t e red flux fgl(x,ii) we obtain the inhomogeneous 
Eq. (7) together with homogeneous boundary conditions 

Z W ) + = I s tff*/_)/'>, 

g = 1, 2 G . (7) + ~ £ Z ; = i 
If we now t r y to find approximate solutions for Eq. (1) 

which exactly sa t i s fy the boundary conditions Eqs . (2) and 
(3), it is sufficient to find approximate solutions for Eq. (7) 
which exactly sa t i s fy homogeneous boundary conditions. 
Another possibil i ty for exactly sat isfying the boundary 
conditions Eqs . (2) and (3) is pointed out la ter in this 
paper . 

B. Expansion in Functions of the Angle Variable 

The unknown solution of Eq. (7) is expanded as follows 
[Eqs. (8)] 

fgl(x,n) = E [<t>g+(x)^(n) + i- 1 

the resul t ing equation in turn with 2N l inearly independent 
weighting functions w f ( j j ) , and integrating over /i, we 
obtain, a f te r some algebra , Eq. (9) f r om which the coeff i -
cient functions 0 f t ( * ) can be calculated. The weighting 
functions wf(in) a r e hal f - range functions in the same sense 
as E q s . (8b) and (8c), and a r e also chosen by the 
u s e r . These weighting functions determine in which sense 
the approximate solution Eq. (8a) will become a " b e s t " 
approximation.1 1 

+ Ag(x)^(x) = B(x) E o£g(*)0'(*) WA y< g 

+ vX'B(x) h o y W ( * ) + / ' ( * ) g = 1, 2, . . . , G . (9) 
7 = 1 

The 2N x 2iV square ma t r i ce s Ag(x) and B(x) and the 
2N-vec to rs fg(x) r esu l t f r o m the procedure descr ibed 
above, the 2iV-vectors <j)g(x) a r e composed of the unknown 
functions ^ ( x ) . 

= 0 

^(M) = 0 

0 < ( 1 < 1 

-1 < Id < 0 

* = 1,2, 

i = 1, 2, N 

(8a) 

(8b) 

(8c) V(x) 

The l inearly independent expansion functions or modes 
*Pf(li) a r e to be chosen by the u se r so that they a r e well 
suited to the problem to be solved. The coefficient func-
t ions 0 f ± ( * ) a r e determined by the method of weighted 
res idua l s Substituting Eq. (8) into Eq. (7), multiplying 

fN
+(x) 

0 !"(*) 

c = 

H = 

D 

crf(x) 

C-lD 

- €cG(X)C -'D 

"C(D = 
« (2) 

' c «7 = £ u.wj(u.)^j(u)dn 

C(3) C<4) c!?> = 
•I 

r (4) ' c >7 = F_\ l±w-(i±)^~j(ii)dii 

-H<1> (2)" hV = 
•i fcKM+tWf > = F^wtinWfiridn 

JJ( 3) h^ -i F\W;(N)IL'T(N)DPL , 

£<2H dV = h ( n W d t = I "'/'Wrf/x £ V j M d n 

_ £ > < 3 > D(4>_ dfV = ( M W , 

fe(x) = C-

ki+(x) 

kg+(x) 

k{-(x) 

kg-(x) 

wf(ii)dti 



Thus, Eq. (9) is a sys tem of l inear f i r s t - o r d e r different ial 
equations consisting of 2N x G coupled differential equa-
tions. This sys tem of equations can be considered as a 
reduced multigroup problem. So that Eq. (8a) sa t i s f ies 
homogeneous boundary conditions, we requ i re the " n e w " 
boundary conditions, Eqs. (10), for the functions <j>g±(x). 

(10a) 

(10b) 

The jV-vectors 

0«+(d) = 0 
0«"(O) = 0 . 

s±(x) a r e given by Eq. (11). 

i'Hx) = 

titw 

( i i ) 

The solution of Eqs. (9) and (10) can be obtained by approx-
imating Eq. (9) by finite difference equations.14 After 
r eorder ing the resul t ing sys tem of l inear equations, each 
group equation can be solved by an iteration scheme s imi-
lar to that described in Ref. 15 (inner i teration), and the 
whole system may be solved by the famil iar sou rce - i t e r a -
tion technique14 (outer i teration). The coefficient mat r ix 
of the sys tem of linear equations to be solved af ter r e -
ordering is shown schematical ly in Fig. 1, where the 
squares a re N x N sub-mat r i ces and M = 2 x (NX - 1). 
NX is the number of mesh points in the finite difference 
approximation. 

C. Expansion in Functions of the Angle Variable and 
Functions of the Energy Variable 

We expand the unknown solution as in Eq. (12) 

/ S W ) = E [0T(x)^t(M)pf+ + 07(*W(n)pf1 

g = 1 , 2 , . . . ,G . (12) 
The angle modes Vflp.) and the energy modes p f , the 
lat ter in the fo rm of multigroup spec t ra , a r e chosen by 
the user so that both se ts a r e well suited to the problem 
to be solved. The *f(n) and the p ,• must be l inearly 
independent functions and G-vec tors , respect ively , and the 
tyf must sa t isfy Eq. (8a) and (8b). 

Substituting Eq. (12) into Eq. (7) we determine the 
coefficient functions <j>f(x) in the usual manner by the 
method of weighted res idua l s . In the multigroup model, 
multiplication with energy-dependent weighting functions 
vf(E) and integrating over E i s equivalent to sca lar multi-
plying with the weighting G-vec tors v f . After some 
algebra we obtain Eq. (13), f r om which the coefficient 
functions <j>f(x) can be determined. 

d_ 
dx 0(«) + A(x)<f>(x) = f (x) (13) 

The 2N x 2N square mat r ix A(x) and the 2JV-vector f ( x ) 
a re given as follows: 

A = B'1 R 
-Ba) B(2)' 

/(*) = B-1 

kt(x) 

k$(x) 
k'i(x) 

ks(x) 
with 

kt(x) = \ b vf* b vtg f\f'°(x,nW • f \ w f(n)d\i . 

The 2.N-vector $(x) is composed of the unknown coefficient 
functions 

^l(x) 

0 N(X) 

0 N(X) 

Equation (13) is a sys tem of linear f i r s t - o r d e r d i f fe r -
ential equations consisting of only 2N coupled differential 
equations and can thus be considered as a reduced one-
group problem. As before , we requ i re some " n e w " 
boundary conditions, Eqs. (14), so that Eq. (12) sa t i s f ies 
homogeneous boundary conditions. 

0+(d) = 0 
•(0) 0 

(14a) 

(14b) 

The iV-vectors 0 a re given analogous to Eq. (11). The 
solution of Eq. (13) may be obtained af ter approximating 
the different ial equations by finite difference equations 
by the inner i terat ion scheme mentioned above,14 since 
Eq. (13) has the same form as each of the G equations 
of Eq. (9). 

14M. K. BUTLER and J. M. COOK, in Computing Methods in 
Reactor Physics, H. GREENSPAN, C. N. KELBER, D. OKRENT, 
Eds., p. 34, Gordon and Breach Science Publishers, New York 
(1968). 

15E. M. GELBARD, in Computing Methods in Reactor Physics, 
H. GREENSPAN, C. N. KELBER, D. OKRENT, Eds., p. 291, 
Gordon and Breach Science Publishers, New York (1968). 

B = 

B 0) Bw 
with 

6U> _ r (l) 
- c i j • h «=l Pf+ : b!?' _ r ( 2) - 1/ • 

G 
• s 
« = 1 

bj r - ^ (3) . - c i j 
G 
E vf~ Pg+ 6<4) 

' 'i 
_ „ (4) . - c,7 

G 
• E « = i «f~ Pj 

R = 
Rd> r<2>-

_R<3) R <4)_ 
with, e.g. , /*<;> • b V?(x)vrPf+ - D$> • H VG- b V'S^WP! 

' g=i ' g=y 1=1 
i+ 

[ c ^ ' , d j f , and h V f rom par t B] 
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s S / \ /s 
• s s 

s • 
s / s / 
/\ 

/ / S s 

\ V / 

• v ^ • • s S 

1 1 I I I I 

1 1 I I I I 
\ v ' 

• S / s 
/ / S \ 

\ S ' 
S S / 

S / S \ 

s v • 
s / \ • 
• \ Z S 

/ • s s 

1 | I I I I 

1 1 I I I I 
\ S / • 

S /S / 
/ S / S 

/ s 

S S / • 
\ / \ / 
• V S 

• • s \ 
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s \ • s/s 
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= 0 

*f~(n) = 0 

0 < / i £ 1 

-1 < n £ 0 
i= 1 ,2 , . . . ,N; 

g = l , 2 , . . . , G . (15c) 

A'+Gu^+Gi) 

Jo 

-1 0 ; g = 1, 2, . . . ,G 

x h oi 
;' =1 

x s ^ r 4 / 1 v-wv' + f'-b) 
7 = 1 

0 < d < l ; ? = l , 2 , . . . , G . (16b) 

The iV XN square matrices Ag±(id), B± and and the 
iV-vectors f g ± ( u ) result from the procedure described 
above. The elements are given as follows: 

b* = {wf, V f ) 
(wf, tf) 

Fig. 1. Coefficient matrix of finite difference representation of 
Eq. (9). 

D. Expansion in Functions of the Space Variable 

As a third possibility we expand the solution of Eq. (7) 
in functions of the space variable,1 Eq. (15a) 

f \ x ) = £ + 

* = 1, 2, . . . ,G . (15a) 

The space-dependent modes <l>f(x) are chosen as a set of 
linearly independent functions by the user , taking into 
account his knowledge of the desired solution. These 
modes are required to satisfy Eqs. (14), whereas the 
angle-dependent coefficient functions 4 / f ± are required to 
satisfy the conditions given in Eqs. (15b) and (15c) 

(15b) 

According to the method of weighted residuals, we 
substitute our ansatz, Eqs. (15), into Eq. (7) and require 
orthogonality of the residuum in the interval [-1, 0] to the 
N weighting functions wf(x) and orthogonality in the 
interval [0, 1] to the N weighting functions wj(x). The 
weighting functions are to be chosen as before by the 
user as sets of linearly independent functions. With the 
scalar product 

(f,g) = jo
d f(x)g(x)dx 

we obtain Eqs. (16) from which the half-range coefficient 
functions ^f^iii) can be determined. 

The ^ -vec to r s i , s ±( i i ) a re given analogous to Eq. (11). 
If the inverses of Ag+(/i) and Ag~ (jj) exist in the interval 

[-1, 0] and in [0, 1], respectively, we can multiply Eqs. 
(16a) and (16b) from the left with these inverses and obtain 
a system of Fredholm integral equations of the second type 
with degenerate kernel. Such systems can be reduced to 
systems of linear equations by integrating over /u. Each 
group equation of the resulting system can be solved 
directly (no inner iteration) and the whole system can be 
solved by the source-iteration scheme. 

E. Expansion in Functions of the Space Variable and 
Functions of the Energy Variable 

We choose the same expansion as is given by Eq. (12), 
but this time the space modes <j>f(x) and the energy modes 
p f are to be specified by the user , whereas the half-range 
coefficient functions i>f(i±) are to be determined. The 
coefficient functions again are restr icted to half-range 
functions, according to Eqs. (8), and the expansion func-
tions <j>f(x) are required to satisfy the boundary conditions, 
Eqs. (14). In this way, our ansatz, Eq. (12), satisfies 
homogeneous boundary conditions. Proceeding as before 
with the method of weighted residuals, we find the following 
system of equations, Eqs. (17), for determining the coeffi-
cient functions 

A+(p)Tp+(n) = B+ f + D- f ^ - ^ d f j ' +/+0i) 

- l < / i < 0 (17a) 

A-(u)b(u) = D+f l+(p.')dn' + B- f'l-Ui')dn'+f-(n) 
Jo 

0 < M £ 1 . (17b) 

The elements of the Nx N square matrices A±(^), B±, 
D ± and of the N-vectors / ±(/i) are given by the following 
equations: 

«.-,• (M) = M W; 

(16a) 

* £ FT) • £ V'G±PT + FAG " W * * ? 

bfj ^ p ' ^ f ) 

4 -\(w'> o ' ^ p j ^ f ) 
\ g = i '=i / 

f t = 1 («/*, h h JV'v./iOrf/i') • 



The 2N weighting functions wf(x) and the 2N weighting 
G-vectors vf are chosen as linearly independent sets by 
the user and, as pointed out before, determine in which 
sense the approximate solution Eq. (12) will be a " b e s t " 
approximation. The two jV-vectors ip±(i±) a re constituted 
by the unknown half-range coefficient functions ^ f(n). If, 
again, the inverses of A+([i) and A~ (ji) exist in [-1, 0] and 
[0, 1], respectively, we can reduce Eqs. (17) as described 
before to a system of linear equations, which consists of 
only 2N linear equations and therefore , in general, can 
be solved directly (no iteration). 

F. Alternative Treatment of Boundary Conditions 

Instead of dividing the neutron flux into an uncollided 
and a scattered part as in Eq. (4) and then approximately 
solving for the scattered part with homogeneous boundary 
conditions we can proceed in a different manner. We 
expand the total unknown solution of Eq. (1) as in Eqs. (8a), 
(12), or (15a). So that these expansions satisfy Eqs. (2) 
and (3), we require additional or modified conditions for 
the modes and coefficient functions. The simplest case 
is the expansion Eq. (15a). If, in addition, we require 
Eq. (18a) for the space-dependent modes and if we modify 
the restr ic t ions Eqs. (15b) and (15c) for the coefficient 
functions to those given by Eqs. (18b)-(18d), Eq. (15a) 
sat isf ies Eqs. (2) and (3) 

0t(0) = 1 

*f+(n) = 0 0<M£ 1; 2, 3, 

(18a) 

, N (18b) 

= 0 i=\, 2, ...,N (18c) 

= r f f a ) 0 < u < 1 (18d) 
g = 1, 2, • • • ,G . 

The resultant reduced equations, Eqs. (16), will become 
the same with the exception of the iV-vectors f s ± ( j j ) , which 
will change. 

In the three other expansions a similar way for sat isfy-
ing the boundary conditions Eqs. (2) and (3) in general is 
not possible. However, if the angular distribution of the 
incident neutrons is the same in all energy groups, 

rffo) = p'rfoi) 
where the G-vector p describes the energy distribution 
of the incident neutrons, we simply can require the follow-
ing additional and modified conditions. 

Additional condition for the expansions Eqs. (8a) and 
(12) (angle-dependent modes) 

^(/i) =ri(n) 0 <iis 1 
Additional conditions for the expansion Eq. (12) (angle-
dependent modes) 

pf" = pg g = 1, 2, . . . , G . 

Modified conditions for the expansion Eq. (8a) 

*f"(0) = Pg g = l,2,...,G . 
Modified condition for the expansion Eq. (12) (angle-
dependent modes) 

fAO) = 1 . 
Additional c o n d i t i o n s for the e x p a n s i o n Eq. (12) 
(space-dependent modes) 

K(°) = 1 
Pi = Pg g = 1,2, 

Modified conditions for the expansion Eq. (12) (space-
dependent modes) 

The resultant reduced equations retain the form given 
above, only the inhomogeneous t e rms / will change. 
Therefore, the methods of solution mentioned above can 
be applied as before. 

If the boundary conditions are treated in this way, 
care has to be taken in choosing the space-dependent mode 
0i (x) because now the uncollided part of the neutron flux 
is described by the products 0|(*)^!+(m) o r QiixWi~(M)pt 
which do not have any degree of freedom and therefore will 
contain e r r o r s which strongly depend on the mode <j>t(x). 
The total neutron flux, however, does not depend so 
strongly on the mode <j>f(x) because the other t e rms of 
the expansion to a certain degree will compensate for the 
e r r o r s introduced by <fit(x)-

G. Discussion of Restrictions 

Some of the restr ic t ions mentioned above a re not 
necessary. F i rs t , the assumption of isotropic scattering 
in the LS can be dropped. The consequence is more 
computational effort for the evaluation of the scattering 
integral. In the case of expansion in functions of the 
space variable the simple structure of the resultant inte-
gral equations is lost. The flexibility of the expansions is 
enlarged if the space- or angle-dependent modes and 
perhaps even the weighting functions can be chosen differ-
ent from energy group to energy group. This will reduce 
the total number of modes required in each group but, on 
the other hand, will result in more group-dependent 
matr ices and thus will require more storage during com-
putation. Besides, it then becomes possible to t reat any 
boundary condition in the manner described in part F of 
this section. 

The flexibility of the expansions is also enlarged if 
the modes and weighting functions can be chosen to be 
different in different zones of a multilayer problem or in 
the different regions of a homogeneous thick slab. This 
will introduce discontinuities at the interfaces where the 
modes and weighting functions change and will require 
some further conditions for controlling such discontinu-
ities.3 While the e r r o r s near the interfaces will probably 
become greater , a reduction of the overall e r ro r or of the 
necessary number of modes can be expected. 

III. NUMERICAL EXAMPLE 

We have applied the methods described above to calcu-
lating the neutron distribution within a thin (10 cm) homo-
geneous slab consisting of natural uranium with incident 
neutrons on one side. We assume that the energy distribu-
tion of the incident neutrons is equal to that of fission 
neutrons and that the angular distribution is isotropic 
in all groups. The total number of energy groups was 26.13 

A. Angle Modes 

While in the upper energy groups the angular distribu-
tion of the neutrons contains a strong forward component 
because of the incident neutrons, in the lower groups with 
no incident neutrons the angular distribution is ra ther 
isotropic in the middle of the slab and forward and back-
ward peaked at the boundaries. Therefore, as the angle 
modes we have chosen one constant, one function con-
taining a forward component and one function containing 
a backward component. The calculated angular distribution 



of the neutrons at the two outer boundaries of the s lab i s 
shown in Figs . 2 and 3. For comparison, the r e s u l t s of 
an S16 calculation1 6 a r e presented also. With only three 
angle modes in both half spaces which take into account 
only the "physical f ee l ing , " we obtain r a the r accura te 
r e su l t s . The computing t ime requi red i s much l e s s than 
that requ i red for the S16 calculation. 

B. Angle and Energy Modes 

Taking the s ame angle modes as before and choosing 
as the energy modes th ree spec t ra , the f ission spec t rum 
and two spec t ra obtained with a 26-group diffusion calcu-

F[0JQE19)]~ 

GROUP 10 

GROUP 1 

- 516 
> o ANGLE SYNTHESIS 
+ SPACE SYNTHESIS 

{ 1 t-
0»2 0-6 1-0 

GROUP 10 

cose 

Fig. 2. Angular distribution on the left-hand side. Angle syn-
thesis . Space synthesis. 

lation at the center and near the upper su r face of a na tura l 
uranium cylinder (R = 20 cm, II = 40 cm), the lower pa r t 
of which was assumed to have independent volume sources 
for f ission neutrons, we obtain the r e s u l t s shown in Figs . 4 
and 5. Again, the r e s u l t s of the S16 calculation a r e p r e -
sented for comparison. With very l i t t le computational 
effor t (not more than for a multigroup diffusion calculation) 
we again obtain r a the r accura te r e s u l t s . The main e r r o r 
here s eems to be introduced by the energy modes. 

C. Space Modes 

Expecting a more or l e s s exponential behavior of the 
neutron flux, we have chosen as the space modes in both 
half spaces four functions given by the fo rmula 

^ ( x ) = e x p ( ± a x ) - b±(x) . 
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Fig. 3. Angular distribution on the right-hand side. Angle syn-
thesis . Space synthesis. 

16K. D. LATHROP, "DTF IV, a FORTRAN-IV Program for 
Solving the Multigroup Transport Equation with Anisotropic Scat-
tering," LA-3373, Los Alamos Scientific Laboratory (1965). 

Fig. 4. Angular distribution on the left-hand side. Angle-
energy synthesis. Space-energy synthesis. 
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Fig. 5. Angular distribution on the right-hand side. Angle-
energy synthesis. Space-energy synthesis. 



To describe the flux distribution in all energy groups we 
have taken rather arbi t rar i ly the following exponents 

a i ~ 1 . 5 a t j m a x 

a 2 ~ <rt,max 

a 3 ~ C t , m i n 

« 4 ~ " 0 . 3 fft,min 

Calculations with other sets of constants in this range 
gave nearly identical resul ts . The slowly varying func-
tions b(x) were chosen to satisfy the boundary conditions. 
Figures 2 and 3 show the resul ts which agree rather well 
with those of the S16 calculation. The computing time 
required was about that of a multigroup diffusion calcula-
tion. 

D. Space and Energy Modes 

Taking the space and energy modes from part B and C 
of this section we obtain the resul ts shown in Figs. 4 and 5. 
The accuracy again is rather good; only for small ji (i.e., 
nearly parallel to the slab surface) do the e r r o r s become 
considerable. This perhaps can be understood when r e -
membering that the exponential behavior in these direc-
tions can only be described by rather large exponents. 
For ji close to unity the e r r o r s seem to be due to the 
energy modes as was stated before. The computing time 
required was less than that of the multigroup diffusion 
calculation. 

IV. SUMMARY 

This paper describes some special half-range expan-
sions in known expansion functions and unknown coefficient 
functions for solving the multigroup Boltzmann equation 
for slabs. The expansion functions, to be chosen by the 
user , can take into account nearly all information that 

may be available over the space-, angle-, and energy-
dependence of the expected solution. Transport boundary 
conditions can be exactly satisfied, which is of importance 
in small, absorbing or only weakly multiplying systems. 
Two of the expansions eliminate one, the other two expan-
sions eliminate two variables. The resultant reduced 
equations for the coefficient functions are rather simple 
and can be solved numerically. 

The expansions have been applied to calculations of 
the neutron distribution within a thin homogeneous natural 
uranium slab. It was demonstrated that resul ts for such 
relatively simple problems can be obtained at rather little 
computational effort and are nearly as accurate as those 
of SN calculations of high order . It was further shown that 
even approximations of space-angle-energy-synthesis type, 
which eliminate two of three variables and result in very 
simple equations for the coefficient functions, are rather 
accurate. For this type of approximation the computing 
time required is about that of a multigroup diffusion 
calculation. 

The flexibility of these expansions can be enlarged by 
using different sets of modes and weighting functions for 
each zone in multilayer problems or by using different sets 
of space or angle modes and weighting functions in dif-
ferent energy groups. In the latter case, however, the total 
computational effort may become greater even if the 
number of necessary modes can be reduced. Anisotropic 
scattering can be taken into account, but this also will 
increase the computational effort . 
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