
Although the final Eq. (44) governing the second-order auxiliary functions f_{ij} is correct, the procedure for its derivation should be modified as follows. Instead of Eq. (40), governing functions f_{ij}, consider the equation

$$\frac{\partial f_{ij}}{\partial t} = Mf_{ij} + \frac{2}{\alpha_i + \alpha_j} (s_{ij} + s_{ji}) + \frac{2}{\alpha_i + \alpha_j} N \left(\frac{d^2f}{dp_i dp_j} \right) f, \tag{40}$$

with α, defined by Eq. (14), governing the sum functions

$$f_{ij} = \frac{2}{\alpha_i + \alpha_j} (f_{ij} + f_{ji}). \tag{41}$$

Since the second-order term contribution $f_{(2)}$ to δf results in

$$f_{(2)} = \sum_{i<j=1}^{J} f_{ij} \delta p_i \delta p_j, \tag{42}$$

we can write

$$\tilde{f}_{ij} = \frac{2}{\alpha_i + \alpha_j} \frac{d^2f}{dp_i dp_j}. \tag{43}$$

Equation (40) then reduces to Eq. (44) of the original paper.

By a quite analogous procedure, instead of Eq. (B.25) of Appendix B, relevant to functions f_{ij}, the following equation should be derived:

$$\frac{\partial \tilde{f}_{ij}}{\partial t} = Hf_{ij} + \tilde{f}_{ij}, \tag{40}$$

relevant to the sum functions f_{ij}, here also defined by the above expression (41) [so that the second-order term contribution $f_{(2)}$ to δf will again be represented by the above Eq. (42)]. The correct expression of the source term \tilde{f}_{ij} at the right side results, i.e.,

$$\tilde{f}_{ij} = \frac{1}{\alpha_i + \alpha_j} \left[2 \frac{d^2f_{ij}}{dp_i dp_j} + \xi_i(f_{ij}, f_{ji}) + \xi_j(f_{ij}, f_{ji}) \right],$$

where ξ_{ij} as defined by Eq. (B.12) is not symmetrical with respect to indices i and j. For this same reason, vector ξ_{ij} in the last term at the right side of the perturbative Eq. (B.26) should be replaced by $\frac{1}{2} (\xi_{ij} + \xi_{ji})$.

In the third paragraph of the right column, p. 106, fifth line, replace "and" by "-". The statement should be $E = I - g = 0$. Nuclear Science and Engineering apologizes for this error.

438