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Motivation, Goals, and Overview

5/15/2020 FAMMoS Research Group 3



DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Goals

1. Develop machine learning surrogate models to supplement 
expensive high-fidelity core simulators.
 High-fidelity solution method acceleration (single physics and multi-

physics)
 Augment nodal methods (pin power reconstruction) 
 Fuel Cycle Optimization
 Feedback modeling for fuel performance applications

2. Can produce model with accuracy of lattice code and runtime of 
nodal code.

3. Produce approximate models rapidly w/o spending human effort 
fine-tuning.

4. Produce models that are robust against out-of-bounds data.
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Overview

 Developed a methodology for the application of deep 
learning to light water reactor (LWR) modeling & simulation.
 Developed a general architecture (LatticeNet) for predicting 

high-fidelity parameter distributions (pin powers) in both 
single and multi-assembly regions.
 Based on computer vision methods
Generate a database of high-fidelity inputs/outputs
 Pin (or sub-pin) inputs correlated to target parameters
 Developed a method to determine if a target model will fail 

to give a physically realistic answer – even for regimes with 
no training data
 Explored methodology generality to novel distributions 

separate from the training distribution
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LatticeNet
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Methods – Neural Networks: Convolutional NN’s

 Proposed initially to perform digit recognition 
 The most well-known form (2D convolution) imposes the 

constraint that data must be in a two-dimensional input 
format
 Applies a kernel across every spatial portion of the input 

image
 In order to capture different features, multiple 𝑀𝑀 × 𝑁𝑁

filters are applied in a single “layer” of a CNN; stacks of 
successive convolutional layers are often called 
convolutional stacks
 Extremely common in image processing/computer vision 

tasks as they allow the easy learning of data-based 
priors, instead of having to hand-craft features yourself
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LatticeNet – Datasets

 Started with a single, reflective 2D PWR assembly
 U-235 enrichment is allowed to vary between 1.8 and 4.9%
 CR position fully in or fully out
 Boron allowed to vary between 0-2,000 ppm
 All TH inputs (moderator density, fuel temperature, clad temperature) 

randomly varied independently according to the methodology described
 4,050 random assemblies generated using this methodology
 Additional sets of 4,050 were generated including burnable poisons 

(BPs)
 Gadolinia
 IFBA
 Pyrex
 WABA
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Methods – TH Variation

 Don’t necessarily want to drive our simulations using realistic TH 
inputs from iterative solves
 Too expensive, have to discard half our CPU cycles
 Not guaranteed to be useful as physical training data (mostly the same)
 Solution: Randomly sampling continuous TH input curves
 Pick vertices with random location and magnitude between Pupper and Plower

 Every other value is a weighted sum, weight a power relationship of inverse 
distance
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Methods – Hyperparameter Optimization

 Network performance depends on hyperparameter choice
 Problems can be very sensitive to particular choices at particular stages
 No existing method to analytically determine best hyperparameter 

choices
 Large body of existing research and past choices for mainstream 

applications, however little/no past choices for our application
 Not intuitive we can make the same choices converged to in other fields
 Solution: Develop a method of hyperparameter optimization that is 

inexpensive and allows us to converge to good hyperparameters 
quickly
 Latin Hypercube Sampling (LHS) to initially understand the search space
 Tree Parzen Estimators (TPE) to suggest good subsequent 

hyperparameters
 Adaptive Successive Halving Algorithm (ASHA) to early stop bad trials
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LatticeNet – Initial Evaluation: Average Statistics

 Perform hyperparameter optimization using 200 LHS + 300 TPE
 Take best-performing hyperparameter combination, and perform 

k-fold cross validation using all 20,250 samples from the five 
different sub-datasets discussed
Goal: determine if network can make correct predictions when 

trained with physically different data distributions
 Statistics close enough that we can reasonably conclude results 

are real – all except for Fold 3…
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LatticeNet – Pinwise Error

 Average percent error per pin
 No Poison, Pyrex and WABA have the least error 

relative to the other BP groups
Gadolinia has among the highest errors relatively 

speaking and you can generally see higher errors 
where Gadolinia pins would likely be
 Not immediately clear why IFBA should generally have 

such high error, very weak BP
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LatticeNet – Initial Evaluation: Pinwise Error

 Possible explanation: Kernel size is too large (17x17) 
meaning if it matches on one specific pattern it will 
likely match on others as well; may not be very “clear” 
to the network which BP design pattern it’s dealing 
with
 Solution: Reduce the kernel size from 17x17 to 2x2, 

3x3 or 4x4 (adjust padding accordingly) and re-
optimize the hyperparameters
 Result: General suppression of the error to something 

a little bit more manageable (not perfect)
 Likely secondary error driver: too many IFBA pins
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LatticeNet – Comparison against existing methods
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LatticeNet – Geometry Variations

 Reflective 17x17 PWR Fuel Assembly

 Fresh fuel, CRs withdrawn, no IBPs

 Performance parameters held constant

 Three strategies used to vary radii, converge to average over 
each dataset

 Radii allowed to vary +/- 0.1 cm
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LatticeNet – Geometry Variations

5/15/2020 FAMMoS Research Group 16



Multi-region Scaling
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Multi-region Scaling – A Hidden Issue

 Not immediately obvious that scaling up is straightforward
 Regions composed of multiple assemblies are typically characterized by 

multiple enrichments – neutronics effects become complicated
 With multi-assembly dynamics, the error can be expected to grow larger 

compared to a single assembly – by how much is unknown
 In this context, the space of possible inputs becomes much larger – data 

needs may grow accordingly
 Final problem: scaling up LatticeNet as-is is easy, however the 

computational expense becomes very significant
 Not immediately clear that throwing hundreds of millions/billions of neurons at 

the problem works, or is even desirable
 If this research is to be useful to others, we need models outside of the 

domain of Google-scale simulations
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Multi-region Scaling – A Hidden Issue

We can analytically estimate how computationally expensive our model will be, at least generally.

 𝐴𝐴 = # of pins/assembly; 𝑅𝑅 = # of assemblies in square region
MLP – # of parameters: 𝑃𝑃𝐹𝐹 = 𝑁𝑁𝑖𝑖𝐹𝐹𝑁𝑁𝑜𝑜𝐹𝐹 + 𝑁𝑁𝑜𝑜
 CNN – # of parameters: 𝑃𝑃𝐶𝐶 = 𝑁𝑁𝑖𝑖𝐶𝐶𝑘𝑘𝑥𝑥𝑘𝑘𝑦𝑦𝑁𝑁𝑓𝑓𝐶𝐶 + 𝑁𝑁𝑓𝑓
 CNN – output size: 𝑆𝑆𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝐶𝐶 = 𝑁𝑁𝑓𝑓𝐶𝐶𝐴𝐴2𝑅𝑅2

 Concatenation stack: 𝑆𝑆𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 = ∑𝑗𝑗=13 𝑁𝑁𝑓𝑓𝑗𝑗𝐶𝐶 𝐴𝐴2𝑅𝑅2

 Regression, 1st layer: 𝑃𝑃𝐹𝐹1 = ∑𝑗𝑗=13 𝑁𝑁𝑓𝑓𝑗𝑗𝐶𝐶 𝐴𝐴2𝑅𝑅2𝑁𝑁𝑜𝑜𝐹𝐹 + 𝑁𝑁𝑜𝑜𝐹𝐹
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LatticeNet 1.1
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Multi-region Scaling – Results: Statistical Error
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Multi-region Scaling – Results: Maximum Error

General error statistics support our claims, 
however the maximum error is problematic –
generally 5% error is a little high!
 No discernable trend between the different errors 

except that it increases with region size
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Data Generality
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Data Generality – Distribution Generality

Worthwhile to check how general the data generation methodology is – appears to be relatively 
robust for TH inputs, but what about the more challenging (and much more important) class of 
inputs, assembly enrichment?
 Traditional ML approaches dictate that you can’t generalize well to out-of-distribution data points 

unless the underlying distribution is very well-behaved – and even then it’s difficult
Worthwhile to investigate how well our current data generation methodology – pure random 

sampling – generalizes to other distributions
 Arguments can be made for both purely random and structured data generation approaches
 “Big data” methods solve this by acquiring enough data, but we do not have that luxury in high-

fidelity modeling & simulation – simulations may be just too expensive
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Data Generality – Datasets
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Data Generality –Nodal Powers
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Pin Wise 
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Adversarial TH
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Adversarial TH – Motivation

 Computer vision models – and neural networks in general 
– are known to be vulnerable to “adversarial attacks”
 Typically the addition of imperceptible noise or ”poisoned” data 

samples which causes the network to perform wildly outside of 
expected behavior

 LatticeNet and anything else derived via the methodology 
given here are intended for technical-facing deployment –
not public-facing, no major gain to be had by fooling the 
network
 However, adversarial attacks bring up an interesting idea – we 

can certainly think of physical scenarios where physical models 
can be challenged/have bugs. Can we do the same for 
LatticeNet?
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Adversarial TH – Datasets
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Adversarial TH – Datasets

 To limit the obfuscating effects of variable multi-
assembly regions, analysis limited to a single assembly
 All four classes of physically adversarial inputs applied 

to different input TH parameter distributions separately; 
all other parameter distributions held constant
 100 samples for each class of distribution applied to 

each input TH distribution; 1,200 samples in total 
 Previously generated LatticeNet variants are used
 No re-training done, best variants used ”as-is”
 LatticeNet 1.0, 1.1 and 1.2 only used, since 1.3 and 1.4 

shown non-optimal for single assemblies
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Adversarial TH – Moderator Density: Four Corners

 For data literally outside of the training data, results are 
surprisingly well-behaved; percent error less than 1.8%
 Very interesting that there appears to be a pseudo-

continuous gradient from the outer corners of the 
assembly to the center of the assembly in all four cases
 LatticeNet 1.1 appears to produce a high number of 

outliers for virtually all samples – possible indication that 
we should look elsewhere for specific engineering 
applications (although more work needed to confirm)
 Shows that, at least for some inputs, developed 

networks have the potential to perform out-of-training-
data inference without terrible increase in error
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Adversarial TH – Clad Temperature: Symmetry Test

Most inputs remain similarly rotationally stable 
for the fuel temperature and moderator density 
inputs, however one brittle model is revealed
 Not entirely discouraging – an amplitude of -0.5 

for the fuel temperature input would correspond to 
approximately -250 degrees Celsius

 Also worth noting: this method is an indicator 
of physical robustness, but it does not 
guarantee physical correctness or lower/upper 
error bound
 Primarily useful as an easy way to check if a 

model is brittle under reflection
 Necessary – but not sufficient – to verify physical 

integrity of a model
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Conclusions & Future Work
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Conclusions

 Established a methodology to systematically develop hierarchical, computer vision-based models 
(LatticeNet) for predicting high-fidelity reactor parameters such as pin powers.
 Developed fast and accurate models, inference time:
 Heaviest (most  parameters) models can be relied upon to produce an answer in 1-2 milliseconds
 Practical/best performing models produce an answer in 0.3 milliseconds 
 Developed an algorithm for the model evaluation and hyper parameter optimization. 
 Evaluated these models under adversarial TH inputs, and showed that the models remain almost 

universally robust; developed a method to detect brittleness
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Future Work

 Extend these methods to real industrial and academic use 
cases (HIFI-NN)
 Significant potential for the development of hybrid physical/neural 

network-based solution acceleration and pin power reconstruction.
 Proven semi-continuous behavior of the network may be 

amenable to error/uncertainty quantification
 Apply these methods to advanced reactors 
 Neural networks may be an effective way in the future for core 

designers/researchers to get a quick, pseudo-high-fidelity study of 
a novel design space started with a minimum of high-fidelity 
information.
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