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Goals

Fuel Temperature

1. Develop machine learning surrogate models to supplement
expensive high-fidelity core simulators.

Clad Temperature

Base Assembly
00000000000000

2. Can produce model with accuracy of lattice code and runtime of |
nOdaI COde HcdarafoeBaniy oeoce000000

3. Produce approximate models rapidly w/o spending human effort
fine-tuning.
4. Produce models that are robust against out-of-bounds data.

A
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Overview

= Developed a methodology for the application of deep
learning to light water reactor (LWR) modeling & simulation.

= Developed a general architecture (LatticeNet) for predicting
high-fidelity parameter distributions (pin powers) in both
single and multi-assembly regions.
: i

= Generate a database of high-fidelity inputs/outputs

= Developed a method to determine if a target model will fail
to give a physically realistic answer — even for regimes with
no training data

= Explored methodology generality to novel distributions
separate from the training distribution

Moderator Density (MD) stack
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Methods — Neural Networks: Convolutional NN’s Input
EEES
i Convolution layer 1
= Proposed initially to perform digit recognition /
= The most well-known form (2D convolution) imposes the -
constraint that data must be in a two-dimensional input C y * t
format y

= Applies a kernel across every spatial portion of the input
image
= |n order to capture different features, multiple M x N
filters are applied in a single “layer” of a CNN; stacks of
successive convolutional layers are often called
convolutional stacks S -
V. Dumoulin, F. Visin, “A guide to

= Extremely common in image processing/computer vision convolution arithmetic for decp
. earning
tasks as they allow the easy learning of data-based
priors, instead of having to hand-craft features yourself

VY

Flatten
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LatticeNet — Datasets

= Started with a single, reflective 2D PWR assembly
/ 7//7//
N Bt o
, e
= Additional sets of 4,050 were generated including burnable poisons .. e
(BPS) Design parameter Allowed Range
. Fuel temperature (Celsius) 286-1,326 P
Cladding temperature (Celsius) 286-356
- Moderator density (g/cc) 0.660-0.743 L
m Fuel Enrichment 1.8%—4.9% =l
. Control Rod position 0,1
Boron Concentration (ppm) 0-2,000 Sopit By aras ek
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Methods — TH Variation

570
560
550

= Don’t necessarily want to drive our simulations using realistic TH

inputs from iterative solves

530
520
510
500

£
(=]
Parametey Value

= Solution: Randomly sampling continuous TH input curves

N
Piower v, V2 Vs Pupper P = Ei Wivi w; = 1—0
—_— N— l dm
I X Wi ’
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Methods — Hyperparameter Optimization

= Network performance depends on hyperparameter choice

Optimization™,
start ./

Compute first
200 configurations
via LHS

Evaluate
configuration
via ASHA

Evaluate
configuration
viaASHA

Y

Computed all
required LHS
configurations?

= Solution: Develop a method of hyperparameter optimization that is
inexpensive and allows us to converge to good hyperparameters
quickly

| No

5/15/2020 FAMMoS Research Group '@‘

» Yes
v

Update TPE model

'

Select next
configuration
according to TPE

v

Evaluate
configuration
via ASHA

Max number of
iterations?

\ Yes
\J

Optimization
start

|
Y

Train for 100
epochs

v

Evaluate model
according to
optimization criteria

Model below
cutoff or not
enough data?

All past
results

) -

¢ Yes

Train for double the
current training time

|
\J

Evaluate model
according to
optimization criteria

|
v

Terminate
- , |
evaluation /
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LatticeNet — Initial Evaluation: Average Statistics

= Perform hyperparameter optimization using 200 LHS + 300 TPE

1071

= Take best-performing hyperparameter combination, and perform

k-fold cross validation using all 20,250 samples from the five

different sub-datasets discussed

= Goal: determine if network can make correct predictions when 105

10—3_

Training Loss

trained with physically different data distributions

= Statistics close enough that we can reasonably conclude results
are real — all except for Fold 3...

10—6_

1072_

1074_

—— Fold 1
—— Fold 2
— Fold 3
— Fold 4
—— Fold 5

0 1000 2000 3000
# Epochs

Avg. RMSE Max RMSE | Avg. Max Absolute Error | Max Absolute Error
Fold 1: | 8.28E-04+3.85E-04 | 3.46E-03 3.03E-03 1.82E-02
Fold 2: | 8.87E-04+4 04E-04 | 2.78E-03 3.26E-03 2.53E-02
Fold 3: | 7.80E-03+9.27E-03 | B8.28E-02 2.20E-02 2.19E-01
Fold 4: | 9.20E-04£3.54E-04 | 2.49E-03 3.24E-03 1.67E-02
Fold 5: | 8.76E-04+3 85E-04 | 3.33E-03 3.17E-03 1.95E-02
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LatticeNet — Pinwise Error

-

Actual Predicted Gadolinia

r 1.88E-01

- 1.69E-01

- 1.50E-01

IFBA No Poison 1.31E-01

1.12E-01

= Average percent error per pin

= No Poison, Pyrex and WABA have the least error
relative to the other BP groups

= Gadolinia has among the highest errors relatively
speaking and you can generally see higher errors
where Gadolinia pins would likely be

= Not immediately clear why IFBA should generally have
such high error, very weak BP

5/15/2020 FAMMoS Research Group ’@‘ 12
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LatticeNet — Initial Evaluation: Pinwise Error

1.88E-01
1.72E-01
1.56E-01

= Possible explanation: Kernel size is too large (17x17)
meaning if it matches on one specific pattern it will
likely match on others as well; may not be very “clear’
to the network which BP design pattern it's dealing

1.40E-01
1.25E-01
) 1.09E-01
9.32E-02
7.75E-02

6.17E-02

with 46002
= Solution: Reduce the kernel size from 17x17 to 2x2, a1

3x3 or 4x4 (adjust padding accordingly) and re- 500000 ] ol 3

optimize the hyperparameters a3

400000 -

= Result: General suppression of the error to something
a little bit more manageable (not perfect)

= Likely secondary error driver: too many IFBA pins 200000 -

300000 A

# Points

100000 A

0 - T T T T
0.0 0.5 1.0 1.5 2.0
13
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LatticeNet — Comparison against existing methods

MPACT temperature distribution

- —— CASMO-4E/SIMULATE-3
= 03019 ___ mpACT/LatticeNet

L B . 8
c
g

3 0251
: [a)
LatticeNet distribution N g

- 42 0.20 A
i e }— g
mu" o [}

~Aal- 5 0.15 -
CASMO-4E distribution =
- ©
2

> :: < 0.10 +
. >
CASMO-4E/SIMULATE-3 E
SIMULATE-3 distribution | comparison [}

: % 0.05 | l ‘i l “ J
0 200 400 600 800 1000
Sample #
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LatticeNet — Geometry Variations Pin Wise (PW)
S OJOLONONO I 00000
Sy — 000000
. - OQOOQ Orrrerrmmmmmenenes 000000
Reflective 17x17 PWR Fuel Assembly 060D O 060000
OOQOQOQO: e 000000
_ QOOQOO e Q00000
= Fresh fuel, CRs withdrawn, no IBPs
Assembly Wise (AW)
OOQQQQ-wrmrmmemeneee 000000
= Performance parameters held constant 888888ﬁﬁﬁﬁifffﬁﬁ:f:8 8 8 8 8 8
0]0]0)010 1O I 000000
QOOQOQQQmmmmmeemnnen 000000
= Three strategies used to vary radii, converge to average over OOOOOO e O000O0O0
each dataset Constant P/D
OOOQOQOwweee
.. 999333 333322
= Radii allowed to vary +/- 0.1 cm B0 990999
OOQOQQOQ e 333333
olololooe SRR,
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LatticeNet — Geometry Variations

PW AW Constant P/D
- 0.0045
H BN I

| 0.0040

E B BN I
0.0035

H B B B N
HE B BN l 0-0030
"s n n" 0.0025
0.0020
Data Group Mean RMSE Max RMSE
Pinwise Variation (PW) 6.76E-03 4+ 1.63E-03 | 9.98E-03
Assemblywise Variation (AW) 3.86E-03 £ 1.16E-03 | 5.12E-03
Assemblywise Variation (Constant P/D) | 2.93E-03 4+ 8.55E-04 | 3.44E-03
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Multi-region Scaling — A Hidden Issue

Fuel Enrichment Pin Powers

= Not immediately obvious that scaling up is straightforward

2x2

computational expense becomes very significant

|
4x4

= Final problem: scaling up LatticeNet as-is is easy, however the oo

5/15/2020 FAMMoS Research Group '@' 18
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Multi-region Scaling — A Hidden Issue

= We can analytically estimate how computationally expensive our model will be, at least generally.

= A = # of pins/assembly; R = # of assemblies in square region
= MLP — # of parameters: PF' = NF'NF + N,

* CNN — # of parameters: P¢ = N{ k,k,Nf + N;

* CNN — output size: Sf,,; = Nf A*R?

= Concatenation stack: S/14 = ¥17_, Nf;A?R?

AxR

|

|

iy

Q"
L1717 ,‘\UJ“I
= Regression, 1st layer: Pt = ¥3_) Nf,A2R2NE + NE N
Ix1 2x2 3x3 4dx4 5x5 6x6 7x7
# of parameters (millions) | 8.671 | 34.681 | 78.031 | 138.721 | 216.751 | 312.121 | 424831

5/15/2020 FAMMoS Research Group ‘@‘
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LatticeNet 1.1 LatticeNet 1.2

AxR

B

Qv
?;‘rv

AxR

R
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Multi-region Scaling — Results: Statistical E{l\lﬂrl

I- : : : .l l. : "= - : [] : .- -. : : h -0.7 -0.8
] LatticeNet Variant . IIIIIIIIIIIIIIIIIIII 06 v
. LNv1.0 B - - - ... O 06
10_1 _- LNVlll L I B - == - == - = m 05
| . LNv12 I Il Ui
B LNv13 ' CURRRCREREIRERE b | CRSEERERERE
I:I LNV1.4 ‘ R L R LR LI LA B B . - - OOS L " e= 0.4
|_u B " "t rrEoEoE O ! 3
U') [ N & = = = = &N SN NN EEE EEEE - m ] |
= 102 : ‘ : IR o T
T4 1 ¢ ¢ ¢ . —
# : '
|G—J ¢+ , . ¢ Eéé—
o }
> [——1
< E E . N " . - " " "a " - ! ;‘- 5 -0.425
10_3 _- . é .“ - - - - L ] - L ] [~ - - - - - - - - >O400
E 0.375
: é $ 0.350
T T T T 0.300
1x1 2x2 3x3 4x4 e
Region Size |
0.250
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Multi-region Scaling — Results: Maximum Error

= General error statistics support our claims,
however the maximum error is problematic —
generally 5% error is a little high!

5/15/2020 FAMMoS Research Group '@‘

Region | Variant | Avg. Samplewise RMSE | Avg. Pinwise MAE | Max Error (%)

1.0 1.944¢-04 + 6.5e-05 1.491e-02 4 2.9¢-03 0.79

1.1 1.558e-04 + 5.0e-05 1.188e-02 £ 2.6e-03 0.40

1x1 1.2 1.676e-04 + 6.5e-05 1.295e-02 &+ 3.0e-03 0.45
1.3 0.28%-04 + 3.6e-04 | 6.942e-02 + 1.7e-02 1.69

1.4 4.515e-04 + 1.8e-04 3.376e-02 + 6.2e-03 1.22

1.0 1.395e-03 -+ 5.0e-04 1.078e-01 + 2.8e-02 2.61

1.1 1.458e-03 -+ 8.0e-04 1.164e-01 + 4.0e-02 5.93

2x2 1.2 1.596e-03 -+ 6.0e-04 1.255e-01 =+ 3.9e-02 3.11
1.3 2.103e-03 =+ 8.5e-04 1.565e-01 =+ 3.5e-02 5.14

1.4 1.377e-03 £ 5.8e-04 1.020e-01 £ 2.1e-02 4.13

1.0 2.774e-03 £ 1.0e-03 | 2.168e-01 £ 8.1e-02 4.54

1.1 2.7701e-03 £ 1.3e-03 | 2.067e-01 £ 6.7e-02 6.30

3x3 1.2 2.803e-03 £ 1.2e-03 | 2.155e-01 £ 7.9e-02 10.02
1.3 3.065e-03 £+ 1.1e-03 | 2.28%-01 + 6.4e-02 6.50

1.4 2.469e-03 + 1.0e-03 1.871e-01 + 4.1e-02 6.56

1.0 5.716e-03 £+ 2.8e-03 | 4.365e-01 + 1.4e-01 17.05

1.1 5.605e-03 +3.2e-03 | 4.306e-01 + 1.4e-01 37.88

4x4 1.2 6.422e-03 + 4.3e-03 | 4.919e-01 + 1.9e-01 30.61
1.3 4.570e-03 + 2.0e-03 3.470e-01 + 1.0e-01 11.39

1.4 3.944e-03 + 1.8e-03 | 2.927e-01 + 8.2e-02 8.23
22




\\\



DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Data Generality — Distribution Generality

= Worthwhile to check how general the data generation methodology is — appears to be relatively
robust for TH inputs, but what about the more challenging (and much more important) class of
inputs, assembly enrichment?

= Traditional ML approaches dictate that you can’t generalize well to out-of-distribution data points
unless the underlying distribution is very well-behaved — and even then it’s difficult

= Worthwhile to investigate how well our current data generation methodology — pure random
sampling — generalizes to other distributions

= “Big data” methods solve this by acquiring enough data, but we do not have that luxury in high-
fidelity modeling & simulation — simulations may be just too expensive

5/15/2020 FAMMoS Research Group '@‘ 24
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Data Generality — Datasets

0.6 - Target
' B Random
I Segmented
0.5 4 )
| |
Random 0.4 - : :
Data Set w 1 ' |
= 0.3 :
= i
0.2 1
i
i
01 ’
)
0.0 - :
Stru Ctu red Random Segmented Hybrid
Data Set Source Training Distribution _
Source Distribution | Target Distribution | Mean RMSE | Max. RMSE | Max. Percent Error
Random Random 1.93e-03 3.02e-02 9.7%
Segmented 5.97e-02 6.19e-01 225.2%
S ted Random 1.07e-01 5.12e-01 203.8%
cgmente Segmented 1.90e-03 6.44e-02 27.3%
Hvbrid Random 1.27e-02 3.93e-01 169.9%
y Segmented 1.31e-02 3.88e-01 158.2%
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Data Generality —Nodal Powers

Target
0.08 - B Random
I Segmented
" " 0.06 . :
Pin Wise :
Power
- L) L) LU
Distribution 2 0.041
2 0.
0.02 A
4 NOdeS Per 0.00 - J éé —i—#
Assembly Ran;:iom Segmlented Hytl>rid
Power Source Training Distribution ]
H = - Source Distribution | Target Distribution | Mean RMSE | Max. RMSE | Max. Percent Error
D Istri b ution Random Random 9.55e-04 8.04e-03 3.2%
Segmented 6.3%-03 8.26e-02 48.3%
S ted Random 2.37e-03 9.58e-03 5.5%
cgmente Segmented 1.21e-03 1.57¢-02 8.1%
Hvbrid Random 8.96e-04 5.14e-03 3.1%
yon Segmented 7.05¢-04 1.04e-02 6.9%
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Adversarial TH — Motivation

= Computer vision models — and neural networks in general
— are known to be vulnerable to “adversarial attacks”

= LatticeNet and anything else derived via the methodology pﬂd’rﬂ ngbb’i
given here are intended for technical-facing deployment — tacktoxtabel g~
not public-facing, no major gain to be had by fooling the T & o —
network .. o o %
o o ol L P o

J. Goodfellow et al., “Explaining and harnessing adversarial
examples,”; G. Goh et al., “Multimodal neurons in artificial neural
networks,”

5/15/2020 FAMMoS Research Group ‘@‘
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Adversarial TH — Datasets

Discontinuity Two Sides
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Adversarial TH — Datasets

= To limit the obfuscating effects of variable multi-
assembly regions, analysis limited to a single assembly

= All four classes of physically adversarial inputs applied
to different input TH parameter distributions separately;
all other parameter distributions held constant

= 100 samples for each class of distribution applied to
each input TH distribution; 1,200 samples in total

= Previously generated LatticeNet variants are used

5/15/2020 FAMMoS Research Group '@‘

Target TH Parameter Parameter Value Range
Moderator Density | 0.66-0.743* g/cc
Fuel Temperature 626 °C
Moderator Density | Clad Temperature 290 °C
Fuel Enrichment 1.8%
Boron 700 ppm
Moderator Density 0.7 g/cc
Fuel Temperature | 286-1326* °C
Fuel Temperature Clad Temperature 290 °C
Fuel Enrichment 1.8%
Boron 700 ppm
Moderator Density 0.7 glee
Fuel Temperature 626 °C
Clad Temperature | Clad Temperature 286-356* °C
Fuel Enrichment 1.8%
Boron 700
*Except for the “Four Corners” dataset
Parameter Value Range
Moderator Density | 0.6-0.8 g/cc
Fuel Temperature | 226-1400 °C
Clad Temperature | 226-400 °C

30
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Adversarial TH — Moderator Density: Four Corners

Error Distribution Max Pinwise Error

= For data literally outside of the training data, resultsare || | |
surprisingly well-behaved; percent error less than 1.8% ° Lk B 1
= Very interesting that there appears to be a pseudo- | u L M “M !
continuous gradient from the outer corners of the oo ” L)
assembly to the center of the assembly in all four cases S
= LatticeNet 1.1 appears to produce a high number of LB
outliers for virtually all samples — possible indication that £ -
we should look elsewhere for specific engineering oas W d il
applications (although more work needed to confirm) B BoH %
= Shows that, at least for some inputs, developed o8] ;

o
o

networks have the potential to perform out-of-training-
data inference without terrible increase in error

LNv1.2
Percent Error
e
»

M;Lgk b

0 20 40 60 80
Sample Index
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Adversarial TH — Clad Temperature: Symmetry Test

. . .. . Fuel T t Mod tor D it
= Most inputs remain similarly rotationally stable 400 - b 099 e r SENEEY
for the fuel temperature and moderator density ¢ 207 -10°  0.83
inputs, however one brittle model is revealed 2 > 102 oo 1073
- -4.00 - . 0.33 - . . pr—
-4.00 -2.00 0.00 2.00 4.00 0.33 0.49 0.66 0.83 0.99
4.00 - _10-2 0.99 - 101
] . ] o - 2.00 - 0.83 e-03
= Also worth noting: this method is an indicator 4 - L -
of physical robustness, but it does not 2 2.00 - 104 0.49 -
guarantee physical correctness or lower/upper -4.00 - | 033~
-4.00 -2.00 0.00 2.00 4.00 0.33 0.49 0.66 0.83 0.99
error bound 400 - 0.99 - e
m ~ 200 - 10-3 083 : )
S 0.00 - 0.66 - 107
_ 2 2.00 - 107* 0.49 - 10~
-4.00 - i i 0.33 - . i i |
-4.00 -2.00 0.00 2.00 4.00 0.33 0.49 0.66 0.83 0.99
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Conclusions

= Established a methodology to systematically develop hierarchical, computer vision-based models
(LatticeNet) for predicting high-fidelity reactor parameters such as pin powers.

= Developed fast and accurate models, inference time:

= Developed an algorithm for the model evaluation and hyper parameter optimization.

= Evaluated these models under adversarial TH inputs, and showed that the models remain almost
universally robust; developed a method to detect brittleness

5/15/2020 FAMMoS Research Group '@‘ 34
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Future Work

= Extend these methods to real industrial and academic use
cases (HIFI-NN)

= Apply these methods to advanced reactors

5/15/2020 FAMMoS Research Group '@‘

\erificatiop

Methods Acce\e@“'\

o

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

35



DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Relevant Publications & Patents

Journal Publications

1. Shriver, F.6, Watson, J. K., “Physically Adversarial Thermal Hydraulics Evaluation of Deep Learning Models for Pressurized Water
Reactors,” Progress in Nuclear Energy, doi: 10.1016/j.pnucene.2022.104149 (2022)

2. Shriver, F.6, Watson, J. K., “Scaling Deep Learning for Whole-Core Reactor Simulation,” Progress in Nuclear Energy, doi:

10.1016/j.pnucene.2022.104134 (2022)

3. Shriver, F.¢, Gentry, C., Watson, J. K., “Prediction of Neutronics Parameters within a 2D Reflective PWR Assembly Using Deep
Learning,” Nuclear Science and Engineering, Taylor & Francis, 0, 1-22 (2021)

Conference Presentations

1. Furlong, A.UY, Shriver, F., Watson, J. K., “Using Neural Networks to Predict Pin Powers in Reflective PWR Fuel Assemblies with Varying
Pin Size,” PHYSOR 2022, Pittsburgh Pa, May 15-20 (2022)

2. Furlong, A.UY, Shriver, F., Watson, J. K.,“Application of LatticeNet Deep Learning Architecture on Neutronics Predictions Using OpenMC,”
ANS Student Conference, April 8-10, pp. 1-3 (2021)

Provisional Patent Application

1. F. ShriverG, J. K. Watson, C. Gentry, “Methods for Prediction of Neutronics Parameters Using Deep Learning,” T18396 (222107-8575),
U.S. Provisional Patent Application Serial No. 63/123,260, filed December 9, 2020

5/15/2020 FAMMoS Research Group '@' 36



DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

DR. JUSTIN WATSON

The Florida Advanced Multiphysics Modeling and Simulation
(FAMMoS) group performs research to develop state-of-art
analysis tools for nuclear reactor safety analysis. Research areas
involve many different aspects of reactor analysis from fuel
management and core design to full scale thermal hydraulic
analysis of nuclear reactors. Areas of particular interest are:

[T
u‘-.-l- .

AeE oF

i
e
*,

O |.. '.-ﬂ:nlll

= Advanced Reactor Physics Methods

= Cross Section Modeling Methods for |
Reactor Analysis

Actual Predicted

Associate Professor

Office: 178 Rhines Hall = Multiphysics Modeling and Simulation
Phone: (352) 273-0241 = Nuclear Reactor Safety Analysis

Email: justin.watson@ufl.edu = High Performance Computing for Reactor
Website : watson.mse.ufl.edu Analysis

= Artificial Intelligence and Machine Learning

5/15/2020 FAMMoS Research Group ‘@‘

37


mailto:justin.watson@ufl.edu
https://watson.mse.ufl.edu/

Herbert Wertheim
College of Engineering

Department of Materials Science
& Engineering

UNIVERSITY of FLORIDA

Scan the code for more info!

s
Charlyne Smith, Ph.D.
Nuclear Engineering, 2021

g9 \

MATERIALS SCIENCE & ENGINEERING
NUCLEAR ENGINEERING PROGRAM

GRADUATE PROGRAMS

RESEARCH AREAS

- Advanced Materials Characterization - Metallurgy

- Biomaterials - Nanomaterials

- Ceramics * Nuclear Fuels and Materials

- Computational: Modeling & Simulation » Nuclear Fusion

- Electronic Materials  Nuclear Security and Detection

- Energy Materials - Polymeric Materials

« Machine Learning / Artificial Intelligence - Radiochemistry

- Materials Processing - Reactor Physics and Thermal Hydraulics




Herbert Wertheim College of Engineering

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A




DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

References

[1] B. Kochunas et al., “VERA CORE SIMULATOR METHODOLOGY FOR PWR CYCLE DEPLETION”

®  [2]V. Dumoulin, F. Visin, “A guide to convolution arithmetic for deep learning”, Available: https://arxiv.org/abs/1603.07285
m  [3] P. Remy, “Keract: Keras Activations + Gradients”, Available: https://github.com/philipperemy/keract

m  [4] L Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” in International Conference on Learning Representations, 2015. [Online].
Available: http://arxiv.org/abs/1412.6572

m  [5] G. Goh et al., “Multimodal neurons in artificial neural networks,” Distill, 2021, Available: https://distill.pub/2021/multimodal-neurons

40 Y



	Slide Number 1
	Acknowledgements
	Slide Number 3
	Goals
	Overview
	Slide Number 6
	Methods – Neural Networks: Convolutional NN’s�
	LatticeNet – Datasets
	Methods – TH Variation
	Methods – Hyperparameter Optimization
	LatticeNet – Initial Evaluation: Average Statistics
	LatticeNet – Pinwise Error
	LatticeNet – Initial Evaluation: Pinwise Error
	LatticeNet – Comparison against existing methods
	LatticeNet – Geometry Variations
	LatticeNet – Geometry Variations
	Slide Number 17
	Multi-region Scaling – A Hidden Issue
	Multi-region Scaling – A Hidden Issue
	LatticeNet 1.1
	Multi-region Scaling – Results: Statistical Error
	Multi-region Scaling – Results: Maximum Error
	Slide Number 23
	Data Generality – Distribution Generality
	Data Generality – Datasets
	Data Generality –Nodal Powers
	Slide Number 27
	Adversarial TH – Motivation
	Adversarial TH – Datasets
	Adversarial TH – Datasets
	Adversarial TH – Moderator Density: Four Corners
	Adversarial TH – Clad Temperature: Symmetry Test
	Slide Number 33
	Conclusions
	Future Work
	Relevant Publications & Patents
	DR. JUSTIN WATSON
	Slide Number 38
	Slide Number 39
	Slide Number 40

