## Applications of AI/ML from Nuclear Data to Reactor Design

Vladimir Sobes



Artificial Intelligence for Reactor Design

Key take-aways: 1. Hyper-parameter tuning 2. Learning new functions which are difficult to derive

## Artificial Intelligence for Reactor Design

Key take-aways:

1. Autonomous optimization – *beyond human capabilities* 

2. Surrogate models – *cautionary tales* 

## We need to solve the engineering problem

Key take-aways:

1. Hyper-parameter tuning

2. Learning new functions which are difficult to derive

























J. Armstrong, Decomposition Approach to Parametric Nonconvex Regression; Nuclear Resonance Analysis, UTK MS Thesis, (2021).











### The Future of Human Involvement in Nuclear Data Evaluation

Key take-aways:

1. Hyper-parameter tuning

2. Learning new functions which are difficult to derive

## **Generation of Synthetic Training Data**



















Key take-aways:

1. Hyper-parameter tuning

2. Learning new functions which are difficult to derive

### **Learning the Function for Uncertainty Quantification**





### **Learning the Function for Uncertainty Quantification**





## **Learning the Function for Uncertainty Quantification**





Key take-aways:

1. Hyper-parameter tuning

2. Learning new functions which are difficult to derive

# Artificial Intelligence for Reactor Design

## Artificial Intelligence for Reactor Design

Key take-aways:

1. Autonomous optimization – *beyond human capabilities* 

2. Surrogate models – *cautionary tales* 

## Artificial Intelligence for Reactor Design

Key take-aways:

1. Autonomous optimization – *beyond human capabilities* 

2. Surrogate models – *cautionary tales* 

## "Any sufficiently advanced technology is indistinguishable from magic."

Arthur C. Clarke





Imagine an antenna


### **Motivation for automation**











**Airplane Partition Wall** 



39





#### **Airplane Partition Wall**























# The Future of Human Involvement in Reactor Design





Airplane Partition Wall



Nuclear Systems











# **Motivation for automation**



V. Sobes, et. al., Artificial Intelligence Design of Nuclear Systems Empowered by Advanced Manufacturing, PHYSOR 2020, Mar. (2020)





Fuel: UO<sub>2</sub> Enrichment Density Thermal conductivity

19.75% 10.8 g/cc 4 W/mK





Fuel: UO<sub>2</sub> Enrichment Density Thermal conductivity

19.75% 10.8 g/cc 4 W/mK

Coolant: HeInlet pressure6 MPaInlet flow velocity10 m/sInlet temperature425 °C



#### Constraints Min. excess reactivity Max. fuel temperature Component power



Fuel: UO<sub>2</sub> Enrichment Density Thermal conductivity

19.75% 10.8 g/cc 4 W/mK





#### **Objective: Minimize Fuel Mass**

Constraints Min. excess reactivity Max. fuel temperature Component power



618 C

10 kW

Fuel: UO<sub>2</sub> Enrichment Density Thermal conductivity

19.75% 10.8 g/cc 4 W/mK





# High Fidelity (Full) Physics Model





Constraints

k > 1.01500 $T_{max} < 618 C$ P = 10 kW

Shape must a cylinder



Constraints

Fuel Rod

k > 1.01500 T<sub>max</sub> < 618 C P = 10 kW

Shape must a cylinder













# **Annulus Core**

#### Constraints

k > 1.01500 $T_{max} < 618 C$ P = 10 kW

#### **Annulus Solution**

424.99



#### Cylinder Solution





# **Annulus Core**

Constraints

k > 1.01500 T<sub>max</sub> < 618 C P = 10 kW



#### Cylinder Solution



Minimal critical volume 0.19 m<sup>3</sup>

Volume 0.25 m<sup>3</sup> Surface area 2.5 m<sup>2</sup> Volume 0.52 m<sup>3</sup> Surface area 4.4 m<sup>2</sup>





#### Tapered Design







#### Tapered Design

#### **Blunted Design**









#### Anticipated Tapered Design

#### **Optimal Blunted Design**









### Design Algorithm Gaussian Process Learning





### The Curse of Dimensionality in Design Space





# Artificial Intelligence for Reactor Design

Key take-aways:

1. Autonomous optimization – *beyond human capabilities* 

2. Surrogate models – *cautionary tales* 

### **A Modular Framework**



V. Sobes, B. Hiscox, E. Popov, et al. Al-Based Design of a Nuclear Reactor Core, Nature Scientific Reports, DOI: 10.1038/s41598-021-98037-1 (2021).



### **Full Core Optimization**



### **Full Core Optimization**





# **FNS Design Concept**



J. Pevey, V. Sobes, W. Hines, Neural Network Acceleration of Genetic Algorithms for the Optimization of TEN A Coupled Fast/Thermal Nuclear Experiment, Frontiers in Energy Research-Nuclear Energy (accepted), (2022).



### **Simulation Results**



Fast Flux





**Heuristic Design Objectives** 

Maximize flux representativity Improves the relevance





#### **Heuristic Design Objectives**

Maximize flux representativity Improves the relevance

Maximize flux magnitude Decreases measurement time





# Design Algorithm NSGA2 Genetic Algorithm




#### Human Design







Void







### **Neural Network Acceleration of Genetic Algorithms**



Surrogate Optimization × NSGA-II Optimization





### Massimo Salvatores



#### Massimo Salvatores

# "Simple is beautiful"



John Lloyd



## "Not only have they not created artificial intelligence, they haven't yet created artificial stupidity."