05/15/2022

### Active learning for computational simulations: Application to TRISO fuel failure analysis

### Som L. Dhulipala Computational Scientist in Uncertainty Quantification Computational Mechanics and Materials, INL

### Workshop on scientific machine learning for nuclear engineering applications

**Collaborators:** Ben Spencer, Wen Jiang, Zach Prince, Vincent Laboure, Jason Hales, Chandu Bolisetti, Yifeng Che, Peter German, Mike Shields (Johns Hopkins), Promit Chakroborty (Johns Hopkins)





## **Motivation: Computational Modeling and Simulations**



### **Inverse modeling**

#### 35 measured 30 base case $\sigma_{baw}$ 25 best estimate $\sigma_{best}$ 60 NGR [%] Credit: Che et al. 2021 10 0 100 200300 400 500 Time [day]

### **Coupled modeling**



Credit: Zhang 2020

### **Probabilistic ML: UQ + ML**

- Data
  - High quality, small amount
  - o Low quality, large (or small) amount
- Computational simulations are inherently inaccurate (Hendrickson 2020 DOE ASCR@40)
  - Modeling uncertainties (known knowns)
  - o Epistemic uncertainties (known unknowns)
  - o Aleatoric uncertainties (unknown unknowns)
- Increased complexity with the use of ML to accelerate modeling and simulations
- UQ critical to assess the reliability of model predictions
- All models are wrong, but models that know when they're wrong are useful (Lakshminarayanan et al. 2021)



### Outline

#### Prediction

- Deterministic and Bayesian predictions
- A simple Bayesian surrogate: Gaussian Process
- Beyond Gaussian Processes

#### • Inference

- o Sampling
- o Markov Chain Monte Carlo
- Beyond MCMC: Hybrid MCMC and sampling as optimization
- Active learning and Multifidelity modeling
- TRISO nuclear fuel failure analysis
- Ongoing work:
  - MOOSE stochastic tools module
  - Monte Carlo with Hamiltonian Neural Nets



# Combo of the above three benefits computational tasks

### **Prediction**

Prediction problem: ٠

$$y = f(x; \theta)$$
  
$$\theta^* = Argmin_{\theta} L \quad [= Argmax_{\theta} p(y|x; \theta)]$$

- **Blackbox prediction**
- Auxiliary mesh refinement: Baiges et al. 2019 Neural ٠ network correction term in linear algebraic equations
- **Constitutive relations:** Wang et al. 2019 Reinforcement ٠ Learning to combine phenomenological and data-driven relations
- **Physics in loss function:** Raissi et al. 2019 With training set loss, incorporate differential eq loss and IC/BC loss (Perdikaris 2020, LLNL seminar)
- Eighty Years of FEM by Liu, Li, and Park 2021

Fluid-structure interaction Credit: Baiges et al. 2019 2.5 fine → coarse trained 2.4 2.3 Tip displacement 2.2



2

1.9 0



100

Heat eqn. Credit: Haghighat and Juanes 2019



### **Deterministic and Bayesian predictions**

- Define  $y = f(x; \theta)$
- Solve  $\theta^* = Argmax_{\theta} p(y|x; \theta)$

 $heta^*$ 

• Predict  $y = f(x; \theta^*)$ 



- Define  $y = f(x; \theta)$ 
  - Solve  $p(\theta | \mathbf{x}, \mathbf{y}) \propto p(\mathbf{y} | \mathbf{x}; \theta) p(\theta)$  [Hoff 2009]

• Predict  $p(y|x) = \int p(y|x; \theta) p(\theta|x, y) d\theta$ [Do 2008]



### A simple Bayesian surrogate: Gaussian Process

- Probabilities over functions:  $f(\mathbf{X}) \sim \mathcal{N}(m(\mathbf{X}), k(\mathbf{X}, \mathbf{X}'))$
- Predictive distribution:

$$p(\boldsymbol{y}_* \mid \boldsymbol{X}, \boldsymbol{X}_*, \boldsymbol{y}) \sim \mathcal{N}\Big( k(\boldsymbol{X}_*, \boldsymbol{X}) k(\boldsymbol{X}, \boldsymbol{X})^{-1} \boldsymbol{y},$$

 $k(\boldsymbol{X}_*, \boldsymbol{X}_*) - k(\boldsymbol{X}_*, \boldsymbol{X}) k(\boldsymbol{X}, \boldsymbol{X})^{-1} k(\boldsymbol{X}, \boldsymbol{X}_*)$ 

- Closed form solution; kernel params optimized using SGD
- SE kernel: Universal approximator [Micchelli et al. 2006]
- Robust UQ
- Physics in Gaussian Process: Anonymous 2021, ICLR Physics informed neural network embedded in GP kernel (technically called deep kernel learning)
- Optimal design: Viana et al. 2021 Gaussian process UQ estimate tells the next best training point

$$\int_{0}^{0} \int_{0}^{\infty} exp\left(-\frac{(x-x')^{2}}{2\ell^{2}}\right)$$

(Kernel Cookbook by Duvenaud)





Step function Credit: Wilson et al. 2016

### **Beyond Gaussian Processes**

- GP limitations: Excessive smoothing, highdimensional data, Complexity O(n^3)
- BNN: Bayesian Neural Network

Bayesian surrogates:

GP GP GP learning with VI with SG with HMC A spectrum of Bayesian predictive models\* [Dhulipala et al. 2021]

• Navier-Stokes embedded BNN: Sun and Wang 2020 Flow reconstruction from sparse and noisy data



BNN with Navier-Stokes Credit: Sun and Wang 2020



### Outline

#### Prediction

- Deterministic and Bayesian predictions
- A simple Bayesian surrogate: Gaussian Process
- Beyond Gaussian Processes

#### • Inference

- o Sampling
- o Markov Chain Monte Carlo
- Beyond MCMC: Hybrid MCMC and sampling as optimization
- Active learning and Multifidelity modeling
- TRISO nuclear fuel failure analysis
- Ongoing work:
  - MOOSE stochastic tools module
  - Monte Carlo with Hamiltonian Neural Nets



# Combo of the above three benefits computational tasks

### **Inference: Sampling**

- Probability distributions of input parameters that cause TRISO particle failure (Jiang et al. 2021)
- Update BISON fission gas release models given experimental data (Che et al. 2021)
- Parameter distributions of a Bayesian Neural Network

 $f(\boldsymbol{\theta}|\boldsymbol{Data})$ 

- Standard methods like Monte Carlo or Latin Hypercube very expensive or not applicable
- So, how do we sample efficiently from conditional distributions?



Distributions of input parameters causing TRISO particle failures

### **Markov Chain Monte Carlo**

- Sample efficiently from conditional distributions  $f(\theta | Data)$
- Dark forest: Parameter space
- Well lit camp site: Required distribution to be sampled from
- Light meter: Acceptance ratio (or transition operator)
- Metropolis-Hastings: Popular MCMC algorithm (being implemented in MOOSE)
- Does an MCMC algorithm always converge to the required distribution?
  - Neal 1993 Detailed balance sufficient condition
  - Acceptance ratio satisfies detailed balance
- Variants of MCMC exist on how acceptance ratio designed

#### **MCMC** analogy





### **MCMC: Applications in the Computational Sciences**

 $h(x_3)$ 

- Rare events: Dhulipala et al. 2021 Sample from parameter spaces that causes FE model to fail (Subset Simulation)
- **Inverse analysis:** Lykkegaard et al. 2021 Update porous flow model given ground water data
- High-dimensional integration: Mancang et al. 2011 Neutron transport equation using MCNP with MCMC techniques



# Beyond MCMC: Hybrid MCMC and sampling as optimization

- MCMC limitations: Poor high-dimensional scalability (convergence issues), many model evaluations required
- Hybrid MCMC (Hamiltonian Monte Carlo): Neal 2011 Hamiltonian dynamics solved to propose the next sample. Very good scalability (Current "gold standard" for Bayesian Neural Networks)

$$\boldsymbol{z}_1 = \boldsymbol{z}_0 + \int_{t_0}^{t_1} \boldsymbol{I} \, \nabla H(\boldsymbol{z}) \, dt$$

• Optimization (approximate): Blei et al. 2018 Variational inference transforms sampling to optimization. A variational family of distributions is assumed (e.g., exponential family). Distribution parameters are optimized



### Outline

#### Prediction

- Deterministic and Bayesian predictions
- A simple Bayesian surrogate: Gaussian Process
- Beyond Gaussian Processes

#### • Inference

- o Sampling
- o Markov Chain Monte Carlo
- Beyond MCMC: Hybrid MCMC and sampling as optimization
- Active learning and Multifidelity modeling
- TRISO nuclear fuel failure analysis
- Ongoing work:
  - MOOSE stochastic tools module
  - Monte Carlo with Hamiltonian Neural Nets



# Combo of the above three benefits computational tasks

# **Active learning**

Principle of active learning (Bayesian ML model preferred)



- ML model actively decides the next optimal training point
- Useful when dealing with expensive computational models or costly experiments as the ML model identifies the training point such that the information gain is optimized
- Probabilistic (Bayesian) ML preferred as it provides prediction uncertainty estimates--useful for designing learning functions

### **Multifidelity modeling**

- TRISO model is a good example
- Pehertorfer et al. 2018 Multiple low-fidelity models can be considered
- Computational budget across multiple fidelity models constrained. Gorodetsky et al. 2020 approximate control variates framework
- · Actively decide which modeling fidelity to call





### Outline

#### Prediction

- Deterministic and Bayesian predictions
- A simple Bayesian surrogate: Gaussian Process
- Beyond Gaussian Processes

#### • Inference

- o Sampling
- o Markov Chain Monte Carlo
- Beyond MCMC: Hybrid MCMC and sampling as optimization
- Active learning and Multifidelity modeling
- TRISO nuclear fuel failure analysis
- Ongoing work:
  - MOOSE stochastic tools module
  - Monte Carlo with Hamiltonian Neural Nets



# Combo of the above three benefits computational tasks

### Motivation: TRISO, a robust nuclear fuel



Fuel Kernel (UCO, UO<sub>2</sub>)
 Porous Carbon Buffer
 Inner Pyrolytic Carbon (IPyC)
 Silicon Carbide
 Outer Pyrolytic Carbon (OPyC)

Single TRISO particle of radius ~400 μm (Davenport 2016)



Fuel compact with numerous TRISO particles (Demkowicz 2016)

- TRISO stands for TRI-structural iSOtropic particle fuel
- Proposed for use in many advanced reactor concepts like micro-reactors owing to its robustness
- Interest from the DOE, DOD, and industries like Kairos Power, Xenergy
- Fuel kernel surrounded by several protective layers
- A fuel compact can have 1000s of tiny TRISO particles
- Critical to analyze the failure rates of TRISO
   particle: Impacts to reactor operation

### Motivation: Expensive models, low failure rates

| Heat                                                                                          | Momentum                                                                                                                                                |  |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\rho \ C_p \ \frac{\partial T}{\partial t} + \nabla \cdot (-k \nabla T) - E_f \ \dot{F} = 0$ | $ abla \cdot \boldsymbol{\sigma} = 0$                                                                                                                   |  |
|                                                                                               | $\boldsymbol{\sigma} = \mathcal{C} : (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_c - \boldsymbol{\varepsilon}_t - \boldsymbol{\varepsilon}_i)$ |  |

## **MOOSE** Bison



2D model

**1D representation** 

(Jiang et al. 2021, Dhulipala et al. 2022)

- Sophisticated material property relationships for the different protective layers in TRISO
- Numerically modeled using Bison fuel performance code based on MOOSE (Multiphysics Object Oriented Simulation Environment)
- Failure mode: SiC layer fracture most important. Caused by IPyC cracking induced stress conc.
- 1D model: Fast (~ 11 seconds), approximates SiC stress conc. due to IPyC cracking
- **2D model:** Slow (~30 minutes), models SiC stress conc. using XFEM

**IDAHO NATIONAL LABORATORY** 

• Failure rates: 1E-3 to 1E-7

19

### **Problem statement**

$$P_f = \int_{\widetilde{F}(\boldsymbol{X}) > \mathcal{F}} q(\boldsymbol{X}) \, d\boldsymbol{X} \qquad P_f \approx \hat{P}_f = \frac{1}{N_m} \, \sum \mathbf{I} \big( \widetilde{F}(\boldsymbol{X}) > \mathcal{F} \big)$$

(*F*: Failure threshold; F(X): Model output; q(X): input distributions)



#### **Proposed algorithm**

Dhulipala et al. 2021

- Rare events estimation involves computing the multidimensional integral
- Monte Carlo and variance reduction methods require prohibitively large calls to the high-fidelity (HF) model
- Multifidelity modeling: Typically make assumptions about the modeling fidelities and/or require fixing the number of HF calls
- Active learning: Can breakdown for smaller failure probabilities (1E-4 or less) and/or require large number of Gaussian Process evaluations
- Proposed: Active learning with multifidelity modeling
  - Dynamically decides the HF calls
  - Flexibility over the LF model choice
  - Capable for Smaller failure probabilities
  - Doesn't require large upfront GP evaluations

## **Background: Subset Simulation (variance reduction)**



$$P_f = P(F_1) \prod_{i=2}^{N} P(F_i | F_{i-1})$$

Proposed by Au and Beck (2001)

- Expresses small failure probabilities as a product of larger conditional probabilities (of the order 0.1)
- Creates intermediate failure thresholds before
   the required failure threshold
- An intermediate failure threshold is defined as the (1-x) percentile value of the samples in previous conditional level
- First conditional level: Direct Monte Carlo
- Subsequent conditional levels: Markov Chain Monte Carlo (Metropolis-Hastings or other variants)

### **Background: Active learning with Gaussian Process**



• Posterior predictive distribution:

- Both mean prediction and uncertainty quantification (quite robust under small training data)
- UQ enables the formulation of active learning functions: U-function (Echard et al. 2011), Expected Feasibility Function (Bichon et al. 2008)
- Active learning function decides when to call high-fidelity (HF) model in Monte Carlo schemes

## **Multifidelity active learning with Gaussian Process**

### **Traditional U-function**



### **Multifidelity U-function**

 $\begin{aligned} y_{HF} &= F(\boldsymbol{X}_{HF}) & \text{High-fidelity model output} \\ y_{LF} &= f(\boldsymbol{X}_{LF}) & \text{Low-fidelity model output} \end{aligned} \quad \boldsymbol{X} = \boldsymbol{X}_{HF} \cup \boldsymbol{X}_{LF} \end{aligned}$ 

LF prediction GP correction  $U = \frac{|f(X_{LF}) + \bar{\epsilon}(X) - F|}{\sigma_{\epsilon}(X)}$ 

- Traditional active learning functions rely on Gaussian Process predictions entirely
- Performance of active learning schemes can be improved using multifidelity modeling
- U-function is extended to a multifidelity modeling setting owing to its simplicity
- A GP learns the differences between high-fidelity (HF) and low-fidelity (LF) predictions
- GP corrects the LF predictions for every test sample
- New multifidelity U-function to decide when to call the HF model

### **Coupled multifidelity active learning and Subset** Simulation

Subset independent multifidelity U-function



### Subset dependent multifidelity U-functions



Required failure  
threshold 
$$\P^{MF}{}_{s} = \frac{|f(X_{LF}) + \bar{\epsilon}(X) - F|}{\sigma_{\epsilon}(X)}$$
(Final conditional level)

- Subset independent multifidelity U-function based on the required failure threshold
- Under smaller failure probabilities (~1E-5) differences between nominal model outputs and required failure threshold are large
- Active learning can breakdown as GP training is not triggered
- Subset dependent multifidelity U-functions are proposed
- Based on intermediate failure thresholds in Subset Simulation to trigger GP re-training
- Intermediate failure thresholds are estimated dynamically

## Proposed active learning with multifidelity modeling



- A GP is trained to learn the differences between HF and LF models (small number of samples)
- For each model evaluation in Subset Simulation, LF model is called
- LF model output is corrected using GP difference (HF-LF)
- Subset dependent U-function is computed to evaluate if HF call is required (threshold is 2)
- If HF call is made, the GP is retrained

### **Proposed algorithm: Statistical estimators**

$$P_1 \approx \hat{P}_1 = \frac{1}{N} \sum_{i=1}^N \mathcal{P}_i \qquad \mathcal{P}_i = P(\mathbf{I}_i = 1) = \begin{cases} 1 \times \Phi_i + 0 \times (1 - \Phi_i) = \Phi_i & \text{if } \mathbf{I}_{i,LF} = 1\\ 0 \times \Phi_i + 1 \times (1 - \Phi_i) = 1 - \Phi_i & \text{if } \mathbf{I}_{i,LF} = 0 \end{cases}$$

First conditional level

$$P_{s|s-1} \approx \hat{P}_{s|s-1} = \frac{1}{N} \sum_{i=1}^{N_c} \sum_{k=1}^{N/N_c} \mathcal{P}_{ik}^s \quad \forall 1 < s \le N_s, \ \mathcal{P}_{ik}^s = \begin{cases} 1 \times \Phi_{ik}^s + 0 \times (1 - \Phi_{ik}^s) = \Phi_{ik}^s & \text{if } \mathbf{I}_{ik,LF}^s = 1\\ 0 \times \Phi_{ik}^s + 1 \times (1 - \Phi_{ik}^s) = 1 - \Phi_{ik}^s & \text{if } \mathbf{I}_{ik,LF}^s = 0 \end{cases}$$
  
Subsequent conditional levels 
$$\hat{\delta}_s = \sqrt{\frac{1 - \hat{P}_{s|s-1}}{N \ \hat{P}_{s|s-1}} (1 + \hat{\gamma}_s)} \quad \hat{\gamma}_s = 2 \sum_{k=1}^{N/N_c-1} \left(1 - \frac{kN_c}{N} \ \hat{\rho}_s(k)\right)$$

 $\gamma_1 \approx \hat{\gamma}_1 = \sqrt{\frac{1 - \hat{P}_1}{\hat{P}_1 - N}}$ 



- Traditional Subset Simulation estimators for • conditional failure probabilities and coefficient of variations use indicator functions
- Due to reliance on a GP, these indicator • functions change to probabilities because GP can have a slight error in mis-characterizing model failures (U-function threshold is 2)
- Updated statistical estimators are derived for the proposed algorithm
- For practical cases, U-function values are significantly greater than 2. Meaning, error in mis-characterizing model failures is negligible
- So, statistical estimators tend to Subset • Simulation estimators

#### Input parameters (7 and 11 uncertain)



#### Irradiation temperatures

|         | Model 1                                 | Model 2                                           | Model 3                                      | Model 4                                       |
|---------|-----------------------------------------|---------------------------------------------------|----------------------------------------------|-----------------------------------------------|
| Ty<br>N | vpe = Daily varying<br>Max. = 1226.84°C | Type = Daily varying<br>Max. = $1281.84^{\circ}C$ | Type = Constant<br>Value = $700.0^{\circ}$ C | Type = Constant<br>Value = $1000.0^{\circ}$ C |
|         | Min. = $207.4^{\circ}$ C                | Min. = $195.84^{\circ}$ C                         |                                              |                                               |



**DNN (LF) + Kriging (correction)** 



#### All surrogates trained on 12 evals of 1D TRISO output



- All three strategies accurately predict the failure probabilities across the four models (COV ~0.08)
- Kriging + Kriging and DNN + Kriging require lesser calls to the 1D TRISO compared to Only Kriging
- DNN + Kriging 26% and 18% less calls than Kriging + Kriging and Only Kriging, respectively
- Possible reason for less calls: more information gain due to multifidelity models and better DNN regularization

**Aspherical** 





**Spherical** 

- The 1-D models approximate stresses in the SiC layer based on modification factors
- These factors are calibrated by running evals of the 2-D model
- 2-D model explicitly models cracking in IPyC layer and stress conc. in SiC layer
- More accurate, but mesh density dependent. Therefore, computationally expensive (~30 mins)
- Same random input params: geometry, material props
- Same output: SiC stress strength (> 0 failure)





- Both "data-driven" and "physics-based" strategies accurately predict the failure probabilities for two models (COV ~ 0.08)
- "Physics-based" strategy which uses 1D TRISO LF requires 16% less calls to the 2D TRISO model
- "Data-driven" strategy has lesser overall simulation time because the DNN LF predictions are instantaneous
- 1D TRISO LF still requires 11 sec for each eval

### Outline

#### Prediction

- Deterministic and Bayesian predictions
- A simple Bayesian surrogate: Gaussian Process
- Beyond Gaussian Processes

#### • Inference

- o Sampling
- o Markov Chain Monte Carlo
- Beyond MCMC: Hybrid MCMC and sampling as optimization
- Active learning and Multifidelity modeling
- TRISO nuclear fuel failure analysis
- Ongoing work:
  - MOOSE stochastic tools module
  - Monte Carlo with Hamiltonian Neural Nets



# Combo of the above three benefits computational tasks

# Adaptive sampling and active learning methods in MOOSE



- MOOSE: Multiphysics Object Oriented Simulation Environment (<u>https://mooseframework.i</u> <u>nl.gov/</u>)
- Massively parallel, modular development, used for many applications
- Adaptive and active learning Monte Carlo algorithms in MOOSE Stochastic Tools Module

## **Monte Carlo with Hamiltonian Neural Networks**



 Sampling from complex distributions can be performed more reliably with Hamiltonian Monte Carlo (HMC)

$$\boldsymbol{z}_1 = \boldsymbol{z}_0 + \int_{t_0}^{t_1} \boldsymbol{I} \, \nabla H(\boldsymbol{z}) \, dt$$

- But gradient evaluations are computationally expensive!!
- Hamiltonian Neural ODEs learn the Hamiltonian dynamics and side-step gradient evaluations in HMC
- In addition, they conserve the Hamiltonian

$$\mathcal{L}_{HNN} = \left\| \frac{\partial \mathcal{H}_{\theta}}{\partial \mathbf{p}} - \frac{\partial \mathbf{q}}{\partial t} \right\|_{2} + \left\| - \frac{\partial \mathcal{H}_{\theta}}{\partial \mathbf{q}} - \frac{\partial \mathbf{p}}{\partial t} \right\|_{2}$$

Useful for sampling from complex distributions
 efficiently

### Thank you! (Som.Dhulipala@inl.gov)



- Ober, S. W., Rasmussen, C. E., & van der Wilk, M. (2021). The promises and pitfalls of deep kernel learning. *arXiv preprint arXiv:2102.12108*.
- Hendrickson, B. (2020). ASCR@ 40: Four Decades of Department of Energy Leadership in Advanced Scientific Computing Research. A Report from the Advanced Scientific Computing Advisory Committee (ASCAC). Krell Inst., Ames, IA (United States).
- Lakshminarayanan, B., Tran, D., & Snoek, J. (2021) Introduction to Uncertainty in Deep Learning. *NeurIPS Tutorial, virtual conference.*
- Wang, K., Sun, W., & Du, Q. (2019). A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with AI-guided experimentation. *Computational Mechanics*, *64*(2), 467-499.
- Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*, 378, 686-707.
- Haghighat, E., & Juanes, R. (2021). Sciann: A keras/tensorflow wrapper for scientific computations and physicsinformed deep learning using artificial neural networks. *Computer Methods in Applied Mechanics and Engineering*, 373, 113552.
- Liu, W. K., Li, S., & Park, H. (2021). Eighty Years of the Finite Element Method: Birth, Evolution, and Future. *arXiv preprint arXiv:2107.04960*.
- Do, C. (2008). Gaussian Processes. Stanford University lecture notes. (<u>http://cs229.stanford.edu/section/cs229-gaussian\_processes.pdf</u>)

- Hoff, P. D. (2009). A first course in Bayesian statistical methods (Vol. 580). New York: Springer.
- Dhulipala, S. L. N., Shields, M. D., Spencer, B. W., Bolisetti, C., Slaughter, A. E., Laboure, V. M., & Chakroborty, P. (2021). Adaptive and Efficient Rare Event Analysis using a Gaussian Process Modeling Fidelity Recommender System. 16<sup>th</sup> US National Congress on Computational Mechanics.

(https://www.researchgate.net/publication/352030774\_Adaptive\_and\_Efficient\_Rare\_Event\_Analysis\_Using\_a\_G aussian\_Process\_Modeling\_Fidelity\_Recommender\_System)

- Duvenaud, D. The Kernel Cookbook: Advice on Covariance Functions. (https://www.cs.toronto.edu/~duvenaud/cookbook/)
- Micchelli, C. A., Xu, Y., & Zhang, H. (2006). Universal Kernels. Journal of Machine Learning Research, 7(12).
- Baiges, J., Codina, R., Castanar, I., & Castillo, E. (2020). A finite element reduced-order model based on adaptive mesh refinement and artificial neural networks. *International Journal for Numerical Methods in Engineering*, 121(4), 588-601.
- Wang, S., Xinling, W., and Perdikaris, P. (2020) Why and when physics-informed neural networks fail to train. LLNL seminar (<u>https://www.youtube.com/watch?v=xvOsV106kuA</u>)
- Wilson, A. G., Hu, Z., Salakhutdinov, R., & Xing, E. P. (2016, May). Deep kernel learning. In *Artificial intelligence and statistics* (pp. 370-378). PMLR.
- Sun, L., & Wang, J. X. (2020). Physics-constrained bayesian neural network for fluid flow reconstruction with sparse and noisy data. *Theoretical and Applied Mechanics Letters*, *10*(3), 161-169.

- Jiang, W., Hales, J. D., Spencer, B. W., Collin, B. P., Slaughter, A. E., Novascone, S. R., ... & Gardner, R. (2021). TRISO particle fuel performance and failure analysis with BISON. *Journal of Nuclear Materials*, *548*, 152795.
- Che, Y., Wu, X., Pastore, G., Li, W., & Shirvan, K. (2021). Application of Kriging and Variational Bayesian Monte Carlo method for improved prediction of doped UO2 fission gas release. *Annals of Nuclear Energy*, *153*, 108046.
- Dhulipala, S. L. N. (2019). Bayesian methods for intensity measure and ground motion selection in performancebased earthquake engineering (Doctoral dissertation, Virginia Tech).
- Neal, R. M. (1993). *Probabilistic inference using Markov chain Monte Carlo methods* (pp. 93-1). Toronto, ON, Canada: Department of Computer Science, University of Toronto.
- Dhulipala, S. L. N., Shields, M. D., Spencer, B. W., Bolisetti, C., Slaughter, A. E., Laboure, V. M., & Chakroborty, P. (2021). Active Learning with Multifidelity Modeling for Efficient Rare Event Simulation. *arXiv preprint arXiv:2106.13790*.
- Lykkegaard, M. B., Dodwell, T. J., & Moxey, D. (2021). Accelerating uncertainty quantification of groundwater flow modelling using a deep neural network proxy. *Computer Methods in Applied Mechanics and Engineering*, 383, 113895.
- Mancang, L., Kan, W., & Dong, Y. (2011). Development of a Monte Carlo multi-group constants generation code.
- Neal, R. M. (2011). MCMC using Hamiltonian dynamics. *Handbook of markov chain monte carlo*, 2(11), 2.
- Hanson, K. (2005). Bayesian analysis in Nuclear Physics. LANL. (<u>https://kmh-lanl.hansonhub.com/talks/lansce05-t4vgr.pdf</u>)

- Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. *Journal of the American statistical Association*, *112*(518), 859-877.
- Kontolati, K., Loukrezis, D., dos Santos, K. R., Giovanis, D. G., & Shields, M. D. (2021). Manifold learning-based polynomial chaos expansions for high-dimensional surrogate models. *arXiv preprint arXiv:2107.09814*.
- Gorodetsky, A. A., Geraci, G., Eldred, M. S., & Jakeman, J. D. (2020). A generalized approximate control variate framework for multifidelity uncertainty quantification. *Journal of Computational Physics*, *408*, 109257.
- Geraci, G., Eldred, M. S., & laccarino, G. (2017). A multifidelity multilevel Monte Carlo method for uncertainty propagation in aerospace applications. In *19th AIAA non-deterministic approaches conference* (p. 1951).
- Paaren, K. M., Lybeck, N., Mo, K., Medvedev, P., & Porter, D. (2021). Cladding Profilometry Analysis of Experimental Breeder Reactor-II Metallic Fuel Pins with HT9, D9, and SS316 Cladding. *Energies*, 14(2), 515.
- Hales, J. D., Jiang, W., Toptan, A., & Gamble, K. A. (2021). Modeling fission product diffusion in TRISO fuel particles with BISON. *Journal of Nuclear Materials*, 548, 152840.
- Zhang, J. (2020). Modern Monte Carlo methods for efficient uncertainty quantification and propagation: A survey. *Wiley Interdisciplinary Reviews: Computational Statistics*, e1539.