
Active learning for computational simulations: 
Application to TRISO fuel failure analysis 

Som L. Dhulipala

Computational Scientist in Uncertainty Quantification

Computational Mechanics and Materials, INL

Workshop on scientific machine learning for nuclear engineering applications

Collaborators: Ben Spencer, Wen Jiang, Zach Prince, Vincent Laboure, Jason Hales, Chandu Bolisetti, Yifeng Che, 
Peter German, Mike Shields (Johns Hopkins), Promit Chakroborty (Johns Hopkins)

05/15/2022



Motivation: Computational Modeling and Simulations
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Forward modeling

Credit: Paaren et al. 2021

Credit: Hales et al. 2021

Inverse modeling

Credit: Che et al. 2021

Coupled modeling

Credit: Zhang 2020



Probabilistic ML: UQ + ML
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Å Data

o High quality, small amount

o Low quality, large (or small) amount

Å Computational simulations are inherently inaccurate 

(Hendrickson 2020 DOE ASCR@40)

o Modeling uncertainties (known knowns)

o Epistemic uncertainties (known unknowns)

o Aleatoric uncertainties (unknown unknowns)

Å Increased complexity with the use of ML to 

accelerate modeling and simulations

Å UQ critical to assess the reliability of model 

predictions

Å All models are wrong, but models that know when 

theyôre wrong are useful (Lakshminarayanan et al. 

2021)

(Credit: Ober et al. 2021)

My model is matching with 

data well

Since my model performed well 

when there is data, should I trust 

its predictions here?

UQ ML



Outline
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Å Prediction

o Deterministic and Bayesian predictions

o A simple Bayesian surrogate: Gaussian Process

o Beyond Gaussian Processes

Å Inference

o Sampling

o Markov Chain Monte Carlo

o Beyond MCMC: Hybrid MCMC and sampling as 

optimization

Å Active learning and Multifidelity modeling

Å TRISO nuclear fuel failure analysis

Å Ongoing work: 

Å MOOSE stochastic tools module

Å Monte Carlo with Hamiltonian Neural Nets

Combo of the above three benefits 

computational tasks

MLUQ

Domain

Knowledge

Physics Experiments

Reliability

Speed
Optimal

design

Scalability



Prediction
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Å Prediction problem:

◐ Ὢ●ȠⱣ
Ᵽᶻ ὃὶὫάὭὲⱣ╛ ὃὶὫάὥὼⱣὴ◐●ȠⱣ

Å Blackbox prediction

Å Auxiliary mesh refinement: Baiges et al. 2019 Neural 

network correction term in linear algebraic equations

Å Constitutive relations: Wang et al. 2019 Reinforcement 

Learning to combine phenomenological and data-driven 

relations

Å Physics in loss function: Raissi et al. 2019 With 

training set loss, incorporate differential eq loss and 

IC/BC loss (Perdikaris 2020, LLNL seminar)

Å Eighty Years of FEM by Liu, Li, and Park 2021

Experiments

Soil constitutive behavior prediction Credit: Wang et al. 2019 

Heat eqn. Credit: Haghighat and Juanes 2019 

Fluid-structure interaction Credit: Baiges et al. 2019 



Deterministic and Bayesian predictions
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Experiments

Å Define ◐ Ὢ●ȠⱣ

Å Solve Ᵽᶻ ὃὶὫάὥὼⱣὴ◐●ȠⱣ

Å Predict ◐ Ὢ●ȠⱣᶻ

(Credit: Ober et al. 2021) (Credit: Ober et al. 2021)

—z

Å Define ◐ Ὢ●ȠⱣ

Å Solve ὴⱣ●ȟ◐ᶿὴ◐●ȠⱣὴⱣ [Hoff 2009] 

Å Predict ὴ◐● ὴ᷿◐●ȠⱣὴⱣ●ȟ◐ Ὠ—

[Do 2008]

—



A simple Bayesian surrogate: Gaussian Process
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Å Probabilities over functions: 

Å Predictive distribution:

Å Closed form solution; kernel params optimized 

using SGD

Å SE kernel: Universal approximator [Micchelli et 

al. 2006]

Å Robust UQ

Å Physics in Gaussian Process: Anonymous 

2021, ICLR Physics informed neural network 

embedded in GP kernel (technically called deep 

kernel learning)

Å Optimal design: Viana et al. 2021 Gaussian 

process UQ estimate tells the next best training 

point

(Kernel Cookbook by Duvenaud)

1st order ODE Credit: Anonymous 2021, ICLR

Credit: Viana et al. 2021



Beyond Gaussian Processes
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Å GP limitations: Excessive smoothing, high-

dimensional data, Complexity O(n^3)

Å BNN: Bayesian Neural Network

Å Bayesian surrogates:

Å Navier-Stokes embedded BNN: Sun and 

Wang 2020 Flow reconstruction from sparse 

and noisy data

*This is incomplete and for illustration only

Step function Credit: Wilson et al. 2016

BNN with Navier-Stokes Credit: Sun and Wang 2020



Outline
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Å Prediction

o Deterministic and Bayesian predictions

o A simple Bayesian surrogate: Gaussian Process

o Beyond Gaussian Processes

Å Inference

o Sampling

o Markov Chain Monte Carlo

o Beyond MCMC: Hybrid MCMC and sampling as 

optimization

Å Active learning and Multifidelity modeling

Å TRISO nuclear fuel failure analysis

Å Ongoing work: 

Å MOOSE stochastic tools module

Å Monte Carlo with Hamiltonian Neural Nets

Combo of the above three benefits 

computational tasks

MLUQ

Domain

Knowledge

Physics Experiments

Reliability

Speed
Optimal

design
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Inference: Sampling
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Experiments

Å Probability distributions of input parameters that 

cause TRISO particle failure (Jiang et al. 2021)

Å Update BISON fission gas release models given 

experimental data (Che et al. 2021)

Å Parameter distributions of a Bayesian Neural Network

Å Standard methods like Monte Carlo or Latin 

Hypercube very expensive or not applicable

Å So, how do we sample efficiently from conditional 

distributions?

Distributions of input parameters causing 

TRISO particle failures

ὪⱣȿ╓╪◄╪



Markov Chain Monte Carlo
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Experiments

Å Sample efficiently from conditional distributions ὪⱣȿ╓╪◄╪

Å Dark forest: Parameter space

ÅWell lit camp site: Required distribution to be sampled from

Å Light meter: Acceptance ratio (or transition operator)

Å Metropolis-Hastings: Popular MCMC algorithm (being 

implemented in MOOSE)

Å Does an MCMC algorithm always converge to the 

required distribution?

o Neal 1993 Detailed balance sufficient condition

o Acceptance ratio satisfies detailed balance

Å Variants of MCMC exist on how acceptance ratio designed

(Credit: Dhulipala 2019)



MCMC: Applications in the Computational Sciences
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Experiments

Å Rare events: Dhulipala et al. 2021 Sample from 

parameter spaces that causes FE model to fail 

(Subset Simulation)

Å Inverse analysis: Lykkegaard et al. 2021 Update 

porous flow model given ground water data

Å High-dimensional integration: Mancang et al. 2011

Neutron transport equation using MCNP with MCMC 

techniques

(Credit: Dhulipala et al. 2021)

(Credit: Lykkegaard et al. 2021)



Beyond MCMC: Hybrid MCMC and sampling as 
optimization
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Experiments

Å MCMC limitations: Poor high-dimensional 

scalability (convergence issues), many 

model evaluations required

Å Hybrid MCMC (Hamiltonian Monte Carlo): 

Neal 2011 Hamiltonian dynamics solved to 

propose the next sample. Very good 

scalability (Current ñgold standardò for 

Bayesian Neural Networks)

Å Optimization (approximate): Blei et al. 

2018 Variational inference transforms 

sampling to optimization. A variational family 

of distributions is assumed (e.g., exponential 

family). Distribution parameters are 

optimized

(Credit: Hanson 2005)

(Credit: Blei et al. 2018)



Outline
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Å Prediction

o Deterministic and Bayesian predictions

o A simple Bayesian surrogate: Gaussian Process

o Beyond Gaussian Processes

Å Inference

o Sampling

o Markov Chain Monte Carlo

o Beyond MCMC: Hybrid MCMC and sampling as 

optimization

Å Active learning and Multifidelity modeling

Å TRISO nuclear fuel failure analysis

Å Ongoing work: 

Å MOOSE stochastic tools module

Å Monte Carlo with Hamiltonian Neural Nets

Combo of the above three benefits 
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MLUQ

Domain

Knowledge

Physics Experiments

Reliability

Speed
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Active learning
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Experiments

Principle of active learning (Bayesian ML model preferred)

Å ML model actively decides the next optimal training point

Å Useful when dealing with expensive computational models or costly experiments as 

the ML model identifies the training point such that the information gain is optimized

Å Probabilistic (Bayesian) ML preferred as it provides prediction uncertainty estimates---

useful for designing learning functions 



Multifidelity modeling
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Experiments

Å TRISO model is a good example

Å Pehertorfer et al. 2018 Multiple low-fidelity 

models can be considered

Å Computational budget across multiple fidelity 

models constrained. Gorodetsky et al. 2020 

approximate control variates framework

Å Actively decide which modeling fidelity to call

Credit: Pehertorfer

et al. 2018

Credit: Geraci et al. 2017



Outline
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Å Prediction

o Deterministic and Bayesian predictions

o A simple Bayesian surrogate: Gaussian Process

o Beyond Gaussian Processes

Å Inference

o Sampling

o Markov Chain Monte Carlo

o Beyond MCMC: Hybrid MCMC and sampling as 

optimization

Å Active learning and Multifidelity modeling

Å TRISO nuclear fuel failure analysis
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Å MOOSE stochastic tools module

Å Monte Carlo with Hamiltonian Neural Nets
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Motivation: TRISO, a robust nuclear fuel
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Å TRISO stands for TRI-structural iSOtropic particle 

fuel

Å Proposed for use in many advanced reactor 

concepts like micro-reactors owing to its 

robustness

Å Interest from the DOE, DOD, and industries like 

Kairos Power, Xenergy

Å Fuel kernel surrounded by several protective 

layers

Å A fuel compact can have 1000s of tiny TRISO 

particles

Å Critical to analyze the failure rates of TRISO 

particle: Impacts to reactor operation

Single TRISO particle of radius 

~400 ʈÍ (Davenport 2016)

Fuel compact with numerous TRISO 

particles (Demkowicz 2016)



Motivation: Expensive models, low failure rates
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Å Sophisticated material property relationships for the 

different protective layers in TRISO

Å Numerically modeled using Bison fuel performance 

code based on MOOSE (Multiphysics Object 

Oriented Simulation Environment)

Å Failure mode: SiC layer fracture most important. 

Caused by IPyC cracking induced stress conc.

Å 1D model: Fast (~ 11 seconds), approximates SiC 

stress conc. due to IPyC cracking

Å 2D model: Slow (~30 minutes), models SiC stress 

conc. using XFEM

Å Failure rates: 1E-3 to 1E-7

Bison

Heat Momentum

(Jiang et al. 2021, Dhulipala et al. 2022)



Problem statement
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Proposed algorithm

Å Rare events estimation involves computing the 

multidimensional integral

Å Monte Carlo and variance reduction methods 

require prohibitively large calls to the high-fidelity 

(HF) model

Å Multifidelity modeling: Typically make 

assumptions about the modeling fidelities and/or 

require fixing the number of HF calls

Å Active learning: Can breakdown for smaller 

failure probabilities (1E-4 or less) and/or require 

large number of Gaussian Process evaluations

Å Proposed: Active learning with multifidelity 

modeling

o Dynamically decides the HF calls

o Flexibility over the LF model choice

o Capable for Smaller failure probabilities

o Doesnôt require large upfront GP evaluations

(F: Failure threshold; F(X): Model output; q(X): input distributions)

Dhulipala et al. 2021



Background: Subset Simulation (variance reduction)
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ὖ ὖὊ ὖὊὊ

Å Expresses small failure probabilities as a 

product of larger conditional probabilities (of the 

order 0.1)

Å Creates intermediate failure thresholds before 

the required failure threshold

Å An intermediate failure threshold is defined as 

the (1-x) percentile value of the samples in 

previous conditional level

Å First conditional level: Direct Monte Carlo

Å Subsequent conditional levels: Markov Chain 

Monte Carlo (Metropolis-Hastings or other 

variants)

Proposed by Au and Beck (2001)



Background: Active learning with Gaussian Process
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Uncertainty

Prediction

Data

(Credit: Cornell 

University)

(Echard et al. 

2011)

Å Posterior predictive distribution:

Å Both mean prediction and uncertainty 

quantification (quite robust under small training 

data)

Å UQ enables the formulation of active learning 

functions: U-function (Echard et al. 2011), 

Expected Feasibility Function (Bichon et al. 

2008)

Å Active learning function decides when to call 

high-fidelity (HF) model in Monte Carlo schemes



Multifidelity active learning with Gaussian Process
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Å Traditional active learning functions rely on 

Gaussian Process predictions entirely

Å Performance of active learning schemes can be 

improved using multifidelity modeling

Å U-function is extended to a multifidelity modeling 

setting owing to its simplicity

Å A GP learns the differences between high-fidelity 

(HF) and low-fidelity (LF) predictions

Å GP corrects the LF predictions for every test 

sample

Å New multifidelity U-function to decide when to 

call the HF model

Ὗ
‘ ὢ Ὂ

„ ὢ

GP prediction
Required failure 

threshold

GP standard deviation

Traditional U-function

Multifidelity U-function

Ὗ
Ὢὢ Ӷὢ Ὂ

„ ὢ

GP correctionLF prediction



Coupled multifidelity active learning and Subset 
Simulation
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Subset independent multifidelity U-function

Ὗ
Ὢὢ Ӷὢ Ὂ

„ ὢ

Required failure 

threshold

Breakdown of active 

learning

Subset dependent multifidelity U-functions

Ὗ
Ὢὢ Ӷὢ Ὂ

„ ὢ

Intermediate failure 

threshold

Ὗ
Ὢὢ Ӷὢ Ὂ

„ ὢ

Required failure 

threshold

(Intermediate conditional levels) (Final conditional level)

Å Subset independent multifidelity U-function 

based on the required failure threshold

Å Under smaller failure probabilities (~1E-5) 

differences between nominal model outputs and 

required failure threshold are large

Å Active learning can breakdown as GP training is 

not triggered 

Å Subset dependent multifidelity U-functions are 

proposed

Å Based on intermediate failure thresholds in 

Subset Simulation to trigger GP re-training

Å Intermediate failure thresholds are estimated 

dynamically



Proposed active learning with multifidelity modeling
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Å A GP is trained to learn the 

differences between HF and LF 

models (small number of samples)

Å For each model evaluation in 

Subset Simulation, LF model is 

called

Å LF model output is corrected using 

GP difference (HF-LF)

Å Subset dependent U-function is 

computed to evaluate if HF call is 

required (threshold is 2)

Å If HF call is made, the GP is 

retrained



Proposed algorithm: Statistical estimators
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Å Traditional Subset Simulation estimators for 

conditional failure probabilities and coefficient 

of variations use indicator functions

Å Due to reliance on a GP, these indicator 

functions change to probabilities because GP 

can have a slight error in mis-characterizing 

model failures (U-function threshold is 2)

Å Updated statistical estimators are derived for 

the proposed algorithm

Å For practical cases, U-function values are 

significantly greater than 2. Meaning, error in 

mis-characterizing model failures is negligible

Å So, statistical estimators tend to Subset 

Simulation estimators

First conditional level

Subsequent conditional 

levels



1D TRISO models failure analysis
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Input parameters (7 and 11 uncertain)

uncertain

uncertain

uncertain

Irradiation temperatures

Output: SiC Stress –

strength (> 0 is failure)



1D TRISO models failure analysis
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Only Kriging Kriging (LF) + Kriging (correction)

DNN (LF) + Kriging (correction)

All surrogates trained 

on 12 evals of 1D 

TRISO output



1D TRISO models failure analysis
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Å All three strategies accurately predict 

the failure probabilities across the four 

models (COV ~0.08)

Å Kriging + Kriging and DNN + Kriging 

require lesser calls to the 1D TRISO 

compared to Only Kriging

Å DNN + Kriging 26% and 18% less calls 

than Kriging + Kriging and Only 

Kriging, respectively

Å Possible reason for less calls: more 

information gain due to multifidelity 

models and better DNN regularization

Model 1: 1E-4 Model 2: 3E-5

Model 3: 1E-3 Model 4: 1E-5



2D TRISO models failure analysis
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Å The 1-D models approximate stresses in the SiC 

layer based on modification factors

Å These factors are calibrated by running evals of 

the 2-D model

Å 2-D model explicitly models cracking in IPyC 

layer and stress conc. in SiC layer

Å More accurate, but mesh density dependent. 

Therefore, computationally expensive (~30 

mins)

Å Same random input params: geometry, material 

props 

Å Same output: SiC stress ïstrength (> 0 failure)

Spherical Aspherical



2D TRISO models failure analysis
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All surrogates trained on 12 

evals of 2D TRISO output

“Data-driven” strategy

(DNN LF + Kriging correction)

“Physics-based” strategy

(1D TRISO LF + Kriging correction)



2D TRISO models failure analysis
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ÅBoth ñdata-drivenò and ñphysics-basedò 

strategies accurately predict the failure 

probabilities for two models (COV ~ 0.08)

ÅñPhysics-basedò strategy which uses 1D 

TRISO LF requires 16% less calls to the 

2D TRISO model

ÅñData-drivenò strategy has lesser overall 

simulation time because the DNN LF 

predictions are instantaneous

Å 1D TRISO LF still requires 11 sec for each 

eval

HF calls with 

sample index

Total simulation time



Outline
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Å Prediction

o Deterministic and Bayesian predictions

o A simple Bayesian surrogate: Gaussian Process

o Beyond Gaussian Processes

Å Inference

o Sampling

o Markov Chain Monte Carlo

o Beyond MCMC: Hybrid MCMC and sampling as 

optimization

Å Active learning and Multifidelity modeling

Å TRISO nuclear fuel failure analysis

Å Ongoing work: 

Å MOOSE stochastic tools module

Å Monte Carlo with Hamiltonian Neural Nets
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Adaptive sampling and active learning methods in 
MOOSE
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Å MOOSE: Multiphysics 

Object Oriented Simulation 

Environment 

(https://mooseframework.i

nl.gov/)

Å Massively parallel, 

modular development, 

used for many applications

Å Adaptive and active 

learning Monte Carlo 

algorithms in MOOSE 

Stochastic Tools Module
1

Scalability

Sampler MultiApp

ActiveLearning
[SurrogateTrain]

Input sample

Model output

Initial training Subsequent usage

ActiveLearning
[SurrogateEval]

[LearningFunction]

[SurrogateTrain]

Sampler

MultiApp

Reporter
[AcceptReject]

[RetrainFlag]

Input sample
Retrain surrogate?

Surrogate

inadequate

SubApp 1
(high- or low-fidelity)

Surrogate output
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.

https://mooseframework.inl.gov/


Monte Carlo with Hamiltonian Neural Networks
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Å Sampling from complex distributions can be 

performed more reliably with Hamiltonian Monte 

Carlo (HMC) 

Å But gradient evaluations are computationally 

expensive!!

Å Hamiltonian Neural ODEs learn the Hamiltonian 

dynamics and side-step gradient evaluations in 

HMC

Å In addition, they conserve the Hamiltonian

Å Useful for sampling from complex distributions 

efficiently

2D Rosenbrock

function

2D 4 Gaussian 

mixture



Thank you!
(Som.Dhulipala@inl.gov)
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(Credit: Ober et al. 2021) (Credit: Ober et al. 2021)

mailto:Som.Dhulipala@inl.gov
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