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Motivation: Computational Modeling and Simulations
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Forward modeling

Credit: Paaren et al. 2021

Credit: Hales et al. 2021

Inverse modeling

Credit: Che et al. 2021

Coupled modeling

Credit: Zhang 2020



Probabilistic ML: UQ + ML
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• Data

o High quality, small amount

o Low quality, large (or small) amount

• Computational simulations are inherently inaccurate 

(Hendrickson 2020 DOE ASCR@40)

o Modeling uncertainties (known knowns)

o Epistemic uncertainties (known unknowns)

o Aleatoric uncertainties (unknown unknowns)

• Increased complexity with the use of ML to 

accelerate modeling and simulations

• UQ critical to assess the reliability of model 

predictions

• All models are wrong, but models that know when 

they’re wrong are useful (Lakshminarayanan et al. 

2021)

(Credit: Ober et al. 2021)

My model is matching with 

data well

Since my model performed well 

when there is data, should I trust 

its predictions here?

UQ ML



Outline
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• Prediction

o Deterministic and Bayesian predictions

o A simple Bayesian surrogate: Gaussian Process

o Beyond Gaussian Processes

• Inference

o Sampling

o Markov Chain Monte Carlo

o Beyond MCMC: Hybrid MCMC and sampling as 

optimization

• Active learning and Multifidelity modeling

• TRISO nuclear fuel failure analysis

• Ongoing work: 

• MOOSE stochastic tools module

• Monte Carlo with Hamiltonian Neural Nets

Combo of the above three benefits 

computational tasks

MLUQ

Domain

Knowledge

Physics Experiments

Reliability

Speed
Optimal

design

Scalability



Prediction
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• Prediction problem:

𝒚 = 𝑓 𝒙; 𝜽
𝜽∗ = 𝐴𝑟𝑔𝑚𝑖𝑛𝜽 𝑳 [= 𝐴𝑟𝑔𝑚𝑎𝑥𝜽 𝑝 𝒚 𝒙; 𝜽 ]

• Blackbox prediction

• Auxiliary mesh refinement: Baiges et al. 2019 Neural 

network correction term in linear algebraic equations

• Constitutive relations: Wang et al. 2019 Reinforcement 

Learning to combine phenomenological and data-driven 

relations

• Physics in loss function: Raissi et al. 2019 With 

training set loss, incorporate differential eq loss and 

IC/BC loss (Perdikaris 2020, LLNL seminar)

• Eighty Years of FEM by Liu, Li, and Park 2021

Experiments

Soil constitutive behavior prediction Credit: Wang et al. 2019 

Heat eqn. Credit: Haghighat and Juanes 2019 

Fluid-structure interaction Credit: Baiges et al. 2019 



Deterministic and Bayesian predictions
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Experiments

• Define 𝒚 = 𝑓 𝒙; 𝜽

• Solve 𝜽∗ = 𝐴𝑟𝑔𝑚𝑎𝑥𝜽 𝑝 𝒚 𝒙; 𝜽

• Predict 𝒚 = 𝑓 𝒙; 𝜽∗

(Credit: Ober et al. 2021) (Credit: Ober et al. 2021)

𝜃∗

• Define 𝒚 = 𝑓 𝒙; 𝜽

• Solve 𝑝 𝜽 𝒙, 𝒚 ∝ 𝑝 𝒚 𝒙; 𝜽 𝑝(𝜽) [Hoff 2009] 

• Predict 𝑝 𝒚 𝒙 =  𝑝 𝒚 𝒙; 𝜽 𝑝 𝜽 𝒙, 𝒚 𝑑𝜃

[Do 2008]

𝜃



A simple Bayesian surrogate: Gaussian Process
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• Probabilities over functions: 

• Predictive distribution:

• Closed form solution; kernel params optimized 

using SGD

• SE kernel: Universal approximator [Micchelli et 

al. 2006]

• Robust UQ

• Physics in Gaussian Process: Anonymous 

2021, ICLR Physics informed neural network 

embedded in GP kernel (technically called deep 

kernel learning)

• Optimal design: Viana et al. 2021 Gaussian 

process UQ estimate tells the next best training 

point

(Kernel Cookbook by Duvenaud)

1st order ODE Credit: Anonymous 2021, ICLR

Credit: Viana et al. 2021



Beyond Gaussian Processes
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• GP limitations: Excessive smoothing, high-

dimensional data, Complexity O(n^3)

• BNN: Bayesian Neural Network

• Bayesian surrogates:

• Navier-Stokes embedded BNN: Sun and 

Wang 2020 Flow reconstruction from sparse 

and noisy data

*This is incomplete and for illustration only

Step function Credit: Wilson et al. 2016

BNN with Navier-Stokes Credit: Sun and Wang 2020



Outline
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• Prediction

o Deterministic and Bayesian predictions

o A simple Bayesian surrogate: Gaussian Process

o Beyond Gaussian Processes

• Inference

o Sampling

o Markov Chain Monte Carlo

o Beyond MCMC: Hybrid MCMC and sampling as 

optimization

• Active learning and Multifidelity modeling

• TRISO nuclear fuel failure analysis

• Ongoing work: 

• MOOSE stochastic tools module

• Monte Carlo with Hamiltonian Neural Nets

Combo of the above three benefits 

computational tasks

MLUQ

Domain

Knowledge

Physics Experiments

Reliability

Speed
Optimal

design

Scalability



Inference: Sampling
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Experiments

• Probability distributions of input parameters that 

cause TRISO particle failure (Jiang et al. 2021)

• Update BISON fission gas release models given 

experimental data (Che et al. 2021)

• Parameter distributions of a Bayesian Neural Network

• Standard methods like Monte Carlo or Latin 

Hypercube very expensive or not applicable

• So, how do we sample efficiently from conditional 

distributions?

Distributions of input parameters causing 

TRISO particle failures

𝑓 𝜽|𝑫𝒂𝒕𝒂



Markov Chain Monte Carlo
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Experiments

• Sample efficiently from conditional distributions 𝑓 𝜽|𝑫𝒂𝒕𝒂

• Dark forest: Parameter space

• Well lit camp site: Required distribution to be sampled from

• Light meter: Acceptance ratio (or transition operator)

• Metropolis-Hastings: Popular MCMC algorithm (being 

implemented in MOOSE)

• Does an MCMC algorithm always converge to the 

required distribution?

o Neal 1993 Detailed balance sufficient condition

o Acceptance ratio satisfies detailed balance

• Variants of MCMC exist on how acceptance ratio designed

(Credit: Dhulipala 2019)



MCMC: Applications in the Computational Sciences
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Experiments

• Rare events: Dhulipala et al. 2021 Sample from 

parameter spaces that causes FE model to fail 

(Subset Simulation)

• Inverse analysis: Lykkegaard et al. 2021 Update 

porous flow model given ground water data

• High-dimensional integration: Mancang et al. 2011

Neutron transport equation using MCNP with MCMC 

techniques

(Credit: Dhulipala et al. 2021)

(Credit: Lykkegaard et al. 2021)



Beyond MCMC: Hybrid MCMC and sampling as 
optimization

13

Experiments

• MCMC limitations: Poor high-dimensional 

scalability (convergence issues), many 

model evaluations required

• Hybrid MCMC (Hamiltonian Monte Carlo): 

Neal 2011 Hamiltonian dynamics solved to 

propose the next sample. Very good 

scalability (Current “gold standard” for 

Bayesian Neural Networks)

• Optimization (approximate): Blei et al. 

2018 Variational inference transforms 

sampling to optimization. A variational family 

of distributions is assumed (e.g., exponential 

family). Distribution parameters are 

optimized

(Credit: Hanson 2005)

(Credit: Blei et al. 2018)



Outline
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• Prediction

o Deterministic and Bayesian predictions

o A simple Bayesian surrogate: Gaussian Process

o Beyond Gaussian Processes

• Inference

o Sampling

o Markov Chain Monte Carlo

o Beyond MCMC: Hybrid MCMC and sampling as 

optimization

• Active learning and Multifidelity modeling

• TRISO nuclear fuel failure analysis

• Ongoing work: 

• MOOSE stochastic tools module

• Monte Carlo with Hamiltonian Neural Nets

Combo of the above three benefits 

computational tasks

MLUQ
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Knowledge

Physics Experiments

Reliability

Speed
Optimal

design

Scalability



Active learning
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Experiments

Principle of active learning (Bayesian ML model preferred)

• ML model actively decides the next optimal training point

• Useful when dealing with expensive computational models or costly experiments as 

the ML model identifies the training point such that the information gain is optimized

• Probabilistic (Bayesian) ML preferred as it provides prediction uncertainty estimates---

useful for designing learning functions 



Multifidelity modeling
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Experiments

• TRISO model is a good example

• Pehertorfer et al. 2018 Multiple low-fidelity 

models can be considered

• Computational budget across multiple fidelity 

models constrained. Gorodetsky et al. 2020 

approximate control variates framework

• Actively decide which modeling fidelity to call

Credit: Pehertorfer

et al. 2018

Credit: Geraci et al. 2017



Outline
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• Prediction

o Deterministic and Bayesian predictions

o A simple Bayesian surrogate: Gaussian Process

o Beyond Gaussian Processes

• Inference

o Sampling

o Markov Chain Monte Carlo

o Beyond MCMC: Hybrid MCMC and sampling as 

optimization

• Active learning and Multifidelity modeling

• TRISO nuclear fuel failure analysis

• Ongoing work: 

• MOOSE stochastic tools module

• Monte Carlo with Hamiltonian Neural Nets

Combo of the above three benefits 
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Speed
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Motivation: TRISO, a robust nuclear fuel
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• TRISO stands for TRI-structural iSOtropic particle 

fuel

• Proposed for use in many advanced reactor 

concepts like micro-reactors owing to its 

robustness

• Interest from the DOE, DOD, and industries like 

Kairos Power, Xenergy

• Fuel kernel surrounded by several protective 

layers

• A fuel compact can have 1000s of tiny TRISO 

particles

• Critical to analyze the failure rates of TRISO 

particle: Impacts to reactor operation

Single TRISO particle of radius 

~400 μm (Davenport 2016)

Fuel compact with numerous TRISO 

particles (Demkowicz 2016)



Motivation: Expensive models, low failure rates
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• Sophisticated material property relationships for the 

different protective layers in TRISO

• Numerically modeled using Bison fuel performance 

code based on MOOSE (Multiphysics Object 

Oriented Simulation Environment)

• Failure mode: SiC layer fracture most important. 

Caused by IPyC cracking induced stress conc.

• 1D model: Fast (~ 11 seconds), approximates SiC 

stress conc. due to IPyC cracking

• 2D model: Slow (~30 minutes), models SiC stress 

conc. using XFEM

• Failure rates: 1E-3 to 1E-7

Bison

Heat Momentum

(Jiang et al. 2021, Dhulipala et al. 2022)



Problem statement
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Proposed algorithm

• Rare events estimation involves computing the 

multidimensional integral

• Monte Carlo and variance reduction methods 

require prohibitively large calls to the high-fidelity 

(HF) model

• Multifidelity modeling: Typically make 

assumptions about the modeling fidelities and/or 

require fixing the number of HF calls

• Active learning: Can breakdown for smaller 

failure probabilities (1E-4 or less) and/or require 

large number of Gaussian Process evaluations

• Proposed: Active learning with multifidelity 

modeling

o Dynamically decides the HF calls

o Flexibility over the LF model choice

o Capable for Smaller failure probabilities

o Doesn’t require large upfront GP evaluations

(F: Failure threshold; F(X): Model output; q(X): input distributions)

Dhulipala et al. 2021



Background: Subset Simulation (variance reduction)
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𝑃𝑓 = 𝑃 𝐹1  

𝑖=2

𝑁

𝑃 𝐹𝑖 𝐹𝑖−1

• Expresses small failure probabilities as a 

product of larger conditional probabilities (of the 

order 0.1)

• Creates intermediate failure thresholds before 

the required failure threshold

• An intermediate failure threshold is defined as 

the (1-x) percentile value of the samples in 

previous conditional level

• First conditional level: Direct Monte Carlo

• Subsequent conditional levels: Markov Chain 

Monte Carlo (Metropolis-Hastings or other 

variants)

Proposed by Au and Beck (2001)



Background: Active learning with Gaussian Process
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Uncertainty

Prediction

Data

(Credit: Cornell 

University)

(Echard et al. 

2011)

• Posterior predictive distribution:

• Both mean prediction and uncertainty 

quantification (quite robust under small training 

data)

• UQ enables the formulation of active learning 

functions: U-function (Echard et al. 2011), 

Expected Feasibility Function (Bichon et al. 

2008)

• Active learning function decides when to call 

high-fidelity (HF) model in Monte Carlo schemes



Multifidelity active learning with Gaussian Process
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• Traditional active learning functions rely on 

Gaussian Process predictions entirely

• Performance of active learning schemes can be 

improved using multifidelity modeling

• U-function is extended to a multifidelity modeling 

setting owing to its simplicity

• A GP learns the differences between high-fidelity 

(HF) and low-fidelity (LF) predictions

• GP corrects the LF predictions for every test 

sample

• New multifidelity U-function to decide when to 

call the HF model

𝑈 =
𝜇𝐺 𝑋 − 𝐹

𝜎𝐺(𝑋)

GP prediction
Required failure 

threshold

GP standard deviation

Traditional U-function

Multifidelity U-function

𝑈 =
𝑓 𝑋𝐿𝐹 +  𝜖(𝑋) − 𝐹

𝜎𝜖(𝑋)

GP correctionLF prediction



Coupled multifidelity active learning and Subset 
Simulation
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Subset independent multifidelity U-function

𝑈 =
𝑓 𝑋𝐿𝐹 +  𝜖(𝑋) − 𝐹

𝜎𝜖(𝑋)

Required failure 

threshold

Breakdown of active 

learning

Subset dependent multifidelity U-functions

𝑈𝑀𝐹𝑠 =
𝑓 𝑋𝐿𝐹 +  𝜖(𝑋) − 𝐹𝑠
𝜎𝜖(𝑋)

Intermediate failure 

threshold

𝑈𝑀𝐹𝑠 =
𝑓 𝑋𝐿𝐹 +  𝜖(𝑋) − 𝐹

𝜎𝜖(𝑋)

Required failure 

threshold

(Intermediate conditional levels) (Final conditional level)

• Subset independent multifidelity U-function 

based on the required failure threshold

• Under smaller failure probabilities (~1E-5) 

differences between nominal model outputs and 

required failure threshold are large

• Active learning can breakdown as GP training is 

not triggered 

• Subset dependent multifidelity U-functions are 

proposed

• Based on intermediate failure thresholds in 

Subset Simulation to trigger GP re-training

• Intermediate failure thresholds are estimated 

dynamically



Proposed active learning with multifidelity modeling
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• A GP is trained to learn the 

differences between HF and LF 

models (small number of samples)

• For each model evaluation in 

Subset Simulation, LF model is 

called

• LF model output is corrected using 

GP difference (HF-LF)

• Subset dependent U-function is 

computed to evaluate if HF call is 

required (threshold is 2)

• If HF call is made, the GP is 

retrained



Proposed algorithm: Statistical estimators
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• Traditional Subset Simulation estimators for 

conditional failure probabilities and coefficient 

of variations use indicator functions

• Due to reliance on a GP, these indicator 

functions change to probabilities because GP 

can have a slight error in mis-characterizing 

model failures (U-function threshold is 2)

• Updated statistical estimators are derived for 

the proposed algorithm

• For practical cases, U-function values are 

significantly greater than 2. Meaning, error in 

mis-characterizing model failures is negligible

• So, statistical estimators tend to Subset 

Simulation estimators

First conditional level

Subsequent conditional 

levels



1D TRISO models failure analysis
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Input parameters (7 and 11 uncertain)

uncertain

uncertain

uncertain

Irradiation temperatures

Output: SiC Stress –

strength (> 0 is failure)



1D TRISO models failure analysis
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Only Kriging Kriging (LF) + Kriging (correction)

DNN (LF) + Kriging (correction)

All surrogates trained 

on 12 evals of 1D 

TRISO output



1D TRISO models failure analysis
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• All three strategies accurately predict 

the failure probabilities across the four 

models (COV ~0.08)

• Kriging + Kriging and DNN + Kriging 

require lesser calls to the 1D TRISO 

compared to Only Kriging

• DNN + Kriging 26% and 18% less calls 

than Kriging + Kriging and Only 

Kriging, respectively

• Possible reason for less calls: more 

information gain due to multifidelity 

models and better DNN regularization

Model 1: 1E-4 Model 2: 3E-5

Model 3: 1E-3 Model 4: 1E-5



2D TRISO models failure analysis
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• The 1-D models approximate stresses in the SiC 

layer based on modification factors

• These factors are calibrated by running evals of 

the 2-D model

• 2-D model explicitly models cracking in IPyC 

layer and stress conc. in SiC layer

• More accurate, but mesh density dependent. 

Therefore, computationally expensive (~30 

mins)

• Same random input params: geometry, material 

props 

• Same output: SiC stress – strength (> 0 failure)

Spherical Aspherical



2D TRISO models failure analysis
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All surrogates trained on 12 

evals of 2D TRISO output

“Data-driven” strategy

(DNN LF + Kriging correction)

“Physics-based” strategy

(1D TRISO LF + Kriging correction)



2D TRISO models failure analysis
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• Both “data-driven” and “physics-based” 

strategies accurately predict the failure 

probabilities for two models (COV ~ 0.08)

• “Physics-based” strategy which uses 1D 

TRISO LF requires 16% less calls to the 

2D TRISO model

• “Data-driven” strategy has lesser overall 

simulation time because the DNN LF 

predictions are instantaneous

• 1D TRISO LF still requires 11 sec for each 

eval

HF calls with 

sample index

Total simulation time



Outline
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• Prediction

o Deterministic and Bayesian predictions

o A simple Bayesian surrogate: Gaussian Process

o Beyond Gaussian Processes

• Inference

o Sampling

o Markov Chain Monte Carlo

o Beyond MCMC: Hybrid MCMC and sampling as 

optimization

• Active learning and Multifidelity modeling

• TRISO nuclear fuel failure analysis

• Ongoing work: 

• MOOSE stochastic tools module

• Monte Carlo with Hamiltonian Neural Nets

Combo of the above three benefits 

computational tasks

MLUQ

Domain

Knowledge
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Reliability

Speed
Optimal

design

Scalability



Adaptive sampling and active learning methods in 
MOOSE
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• MOOSE: Multiphysics 

Object Oriented Simulation 

Environment 

(https://mooseframework.i

nl.gov/)

• Massively parallel, 

modular development, 

used for many applications

• Adaptive and active 

learning Monte Carlo 

algorithms in MOOSE 

Stochastic Tools Module
1

Scalability

Sampler MultiApp

ActiveLearning
[SurrogateTrain]

Input sample

Model output

Initial training Subsequent usage

ActiveLearning
[SurrogateEval]

[LearningFunction]

[SurrogateTrain]

Sampler

MultiApp

Reporter
[AcceptReject]

[RetrainFlag]

Input sample
Retrain surrogate?

Surrogate

inadequate

SubApp 1
(high- or low-fidelity)

Surrogate output
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(high- or low-fidelity)

.

.

.

https://mooseframework.inl.gov/


Monte Carlo with Hamiltonian Neural Networks
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• Sampling from complex distributions can be 

performed more reliably with Hamiltonian Monte 

Carlo (HMC) 

• But gradient evaluations are computationally 

expensive!!

• Hamiltonian Neural ODEs learn the Hamiltonian 

dynamics and side-step gradient evaluations in 

HMC

• In addition, they conserve the Hamiltonian

• Useful for sampling from complex distributions 

efficiently

2D Rosenbrock

function

2D 4 Gaussian 

mixture



Thank you!
(Som.Dhulipala@inl.gov)
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(Credit: Ober et al. 2021) (Credit: Ober et al. 2021)

mailto:Som.Dhulipala@inl.gov
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