INTRODUCING OUR NEW EXECUTIVE TRACK

New this year, a high-level Executive Track has been added to provide busy nuclear professionals a broader look at developments in nuclear science and technology and their impact on policy and markets. Proposals that address the latest advances in fusion, modeling and simulation, and waste are encouraged. Also of interest are presentations on policy, communications, K-12 outreach, diversity and inclusion, leadership and career development, strategic planning, and workforce issues. Inclusion of a summary is optional for Executive Track submittals. In lieu of a summary, you may upload a written proposal that provides a clear statement of the subject matter and an outline of your proposed presentation. Also provide relevant information about your own background. Proposals should be submitted in the Executive Track in the EPSR.

FORMAT

Authors are now REQUIRED to use the ANS Template and Guidelines for TRANSACTIONS Summary Preparation provided on the ANS Web site, ans.org/pubs/transactions. Summaries must be submitted electronically using original Microsoft Word documents and the ANS Electronic Paper Submission and Review System. Summaries not based on the ANS Template will be REJECTED.

GUIDELINES FOR SUMMARIES

Please submit summaries describing work that is NEW, SIGNIFICANT, and RELEVANT to the nuclear industry. ANS will publish all accepted summaries in the TRANSACTIONS. Papers are presented orally at the meeting and presenters are expected to register for the meeting. Non–U.S. attendees requesting a Visa or invitation letter: registrar@ans.org. Completed papers may be published elsewhere, but the summaries become the property of ANS. Under no circumstances should a summary or full paper be published in any other publication prior to presentation at the ANS meeting. It is the author’s responsibility to protect classified or proprietary information.

CONTENT

1. Introduction: State the purpose of the work.
2. Description of the actual work: Must be NEW and SIGNIFICANT.
3. Results: Discuss their significance.
4. References: If any, must be closely related published works. Minimize the number of references.
5. Do not present a bibliographical listing.

LENGTH

1. The minimum length is one full page.
2. The maximum length is four pages, including references, tables, and figures.
3. Limit title to ten words; limit listing authors to three or fewer if possible.

SUBMIT A SUMMARY

https://epsr.ans.org/meeting/?m=310

PROGRAM SPECIALIST

Janet Davis
708-579-8253
jdavis@ans.org
2021 ANS Annual Meeting
June 13-16, 2021 | Omni / Convention Center | Providence, RI

2021 ANNUAL MEETING: SESSION TITLES BY DIVISION

(P) = Panel

1. AEROSPACE NUCLEAR SCIENCE AND TECHNOLOGY (ANSTD)
 1a. Aerospace Nuclear Science and Technology: General
 1b. Advances in Nuclear Propulsion Technologies
 1c. Advances in Space Nuclear Reactor Power

2. DECOMMISSIONING AND ENVIRONMENTAL SCIENCES (DESD)
 2a. Decommissioning Projects in the Northeast (P)
 2b. Environmental Remediaion in the Northeast (P)
 2c. General Topics in Decommissioning and Environmental Science (P)

3. EDUCATION, TRAINING, AND WORKFORCE DEVELOPMENT (ETWD)
 3a. Cutting Edge Techniques in Education, Training and Distance Education
 3b. Training, Human Performance and Workforce Development
 3c. Focus on Communications I (P)
 3d. Focus on Communications II (P)
 3e. Young Nuclear Engineering Programs: New, Embedded or Hybrid
 3f. ANS Grand Challenges I
 3g. ANS Grand Challenges II

4. FUEL CYCLE AND WASTE MANAGEMENT (FCWMD)
 4a. Fuel Cycle and Waste Management: General
 4b. Advances in Actinide Separations
 4c. Research and Management of High-Level Radioactive Waste
 4d. Used Fuel Storage and Transportation
 4e. Fundamental Chemistry and Engineering Supporting Nuclear Waste Management
 4f. University Research in Fuel Cycle and Waste Management
 4g. Uranium Extraction, Purification, and Remediation
 4h. Experimental and Computational Molten Salt Chemistry
 4i. The Need for HALEU: Real or Pending (P)
 4j. Innovations for Ensuring Safe Extended Dry Storage (P)
 4k. Updates from the High Burnup Cask Demonstration Project
 4l. Fuel Cycle Needs to Support Advanced and Small Reactors (P)
 4m. Closing the Fuel Cycle with Small Modular Reprocessing Facilities (P)
 4n. Creating Value from Waste: Recycling Valuable Isotopes for Non-Energy Applications (P)

5. ISOTOPES AND RADIATION (IRD)
 5a. Isotope and Radiation: General
 5b. The US Research and Test Reactor Fleet 2021-2040 - supporting advanced nuclear technology

6. MATERIALS SCIENCE AND TECHNOLOGY (MSTD)
 6a. Fuels and Materials for Molten Salt Reactors
 6b. In-Pile Testing of Nuclear Fuels and Materials
 6c. Accelerated Materials Discovery
 6d. Fuel Materials for Space Propulsion Reactors
 6e. Advanced Manufacturing/Additive Manufacturing
 6f. Nuclear Science User Facilities
 6g. Accident Tolerant Fuels
 6h. Nuclear Fuels
 6i. Plutonium Handbook
 6j. Nuclear Metals
 6k. Materials for Small Modular Reactors and Transformational Challenge Reactor
 6l. Fuel and Materials for Micro-reactor applications

7. MATHEMATICS AND COMPUTATION (MCD)
 7a. Current Issues in Computational Methods—Roundtable (P)
 7b. Transport Methods
 7c. Computational Methods and Mathematical Modeling
 7d. Uncertainty Quantification and Sensitivity Analysis
 7e. Advances in Machine Learning and Artificial Intelligence

8. NUCLEAR CRITICALITY SAFETY (NCSD)
 8a. Data, Analysis and Operations in Nuclear Criticality Safety
 8b. Sharing of Good Industry Practices and/or Lessons Learned in Nuclear Criticality Safety
 8c. An International Perspective on Nuclear Criticality Safety Standards (P)
 8d. OECD NEA Topics Related to Criticality Safety (P)
 8e. Advanced Session on Impact of Chemistry on Nuclear Criticality Safety Evaluations
 8f. NCS of Advanced Fuel Cycles, LEU+ (~8-10%) or HALEU (<20% Triso)
 8g. Fundamental physics of NCS
 8h. NCS Qualification at different sites
 8i. ANS Standards Forum

9. NUCLEAR INSTALLATIONS SAFETY (NISD)
 9a. Technical Issues Faced in the Non-LWR PWR Standard Development (P)
 9b. Nuclear Installations Safety: General
 9c. Current Topics in Probabilistic Risk Analysis
 9d. Safety and Security Challenges for Micro-reactors
 9e. RPB Approaches for Non-LWR External Hazards (P)

10. NUCLEAR NONPROLIFERATION POLICY (NNPD)
 10a. Technology and Policy Advancements in Nuclear Nonproliferation
 10b. International Safeguards and Treaty Verification

11. OPERATIONS AND POWER (OPD)
 11a. Operations and Power: General
 11b. Advanced Nuclear Reactors and Power Systems
 11c. Energy Storage Integration with Nuclear Power Plants
 11d. Hybrid and Integrated Energy Systems

12. RADIATION PROTECTION AND SHIELDING (RPSSD)
 12a. Dosimetry and Shielding for Accelerator Facilities
 12b. Radiation Protection and Shielding General
 12c. Radiation Detection for Homeland Security
 12d. CAD-to-Transport for Radiation Protection and Shielding
 12e. Computational Methods in Radiation Protection and Shielding
 12f. Artificial Intelligence in Radiation Protection and Shielding

13. REACTOR PHYSICS (RPD)
 13a. Reactor Physics: General
 13b. Reactor Analysis Methods
 13c. Reactor Physics Design, Validation and Operational Experience
 13d. Reactor Physics of Micro Reactors for Terrestrial and Space Applications
 13e. Reactor Physics of Advanced Reactors
 13f. Reactor Analysis and Design Methods
 13g. Versatile Test Reactor - Current Developments (P)
 13h. Versatile Test Reactor - Current Developments (P)
 13i. Current Issues in LWR Core Design and Reactor Engineering Support
 13j. Transformational Challenge Reactor - Current Developments
 13k. Transformational Challenge Reactor - Current Developments

14. ROBOTS AND REMOTE SYSTEMS (RRS)

15. THERMAL HYDRAULICS (THD)
 15a. Two-Phase Flow and Heat Transfer Fundamentals
 15b. Computational Thermal Hydraulics
 15c. General Thermal Hydraulics
 15d. Experimental Thermal Hydraulics
 15e. Thermal Hydraulics Research and Development in the Versatile Test Reactor
 15f. Challenges and Opportunities in Thermal Hydraulics of Load-Following Nuclear Systems (P)
 15g. Thermal Hydraulics research in ARPA-E programs (P)
 15h. Thermal-hydraulics for advanced reactors
 15i. Thermal-hydraulics research in TGR
 15j. Thermal-Hydraulics R&D Activities in Printed-Circuit Steam Generators for Advanced Nuclear Reactors
 15k. Machine Learning for nuclear thermal-hydraulics

2021 ANNUAL MEETING: TECHNICAL DIVISIONS

AEROSPACE NUCLEAR SCIENCE AND TECHNOLOGY (ANST)
Jeffrey King, kingjc@mines.edu

DECOMMISSIONING AND ENVIRONMENTAL SCIENCES (DESD)
James Byrne, jjbyrne4244@comcast.net

EDUCATION, TRAINING, AND WORKFORCE DEVELOPMENT (ETWD)
Lisa Marshall, lismarshall@yahoo.com

FUELCYCLE AND WASTE MANAGEMENT (FCWMD)

HUMAN FACTORS, INSTRUMENTATION, AND CONTROLS (HFIC)

MATERIALS SCIENCE AND TECHNOLOGY (MSTD)
Kenneth Geelhood, Kenneth.Geelhood@pnl.gov

MATHEMATICS AND COMPUTATION (MCD)
Brian Kiedrowski, bckiedro@umich.edu

NUCLEAR CRITICALITY SAFETY (NCSD)
Vladimir Sobes, sobesv@utk.edu

NUCLEAR INSTALLATIONS SAFETY (NISD)
Andrew Clark, aclark@sandia.gov

NUCLEAR NONPROLIFERATION POLICY (NNPD)
Stefani Buster, sbuster@ncsu.edu
Jim Behrens, jbbehrens@comcast.net

OPERATIONS AND POWER (OPD)
W. Neal Mann, nealmann@mines.edu

RADIATION PROTECTION AND SHIELDING (RPSSD)
Michael Fensin, mfen@lanl.gov

REACTOR PHYSICS (RPD)
Pavel Tsetkov, Tsetkov@tamu.edu

ROBOTS AND REMOTE SYSTEMS (RRS)
Irina Popova, popova@ornl.gov

THERMAL HYDRAULICS (THD)
Igor Bolotnov, igor_bolotnov@ncsu.edu

YOUNG MEMBERS GROUP (YMG)
Timothy Crook, timothy.m.crook@gmail.com
Matt Wargon, mwdwagon@gmail.com