

Risk-Informed Performance-Based Approach to Manage Plant Operations: From Data to Decisions

(Data Analytics + Smart Models = Robust Decisions)

February 25th, 2022

D. Mandelli Diego.Mandelli@inl.gov

JENSEN HUGHES

Risk Informed Asset Management Project

- **Context:** Advanced modeling and monitoring technologies have the potential to improve plant performances and reduce operating and maintenance (O&M) costs
 - Rich equipment reliability (ER) data
- Our Work: Risk analytics platform
 - Data analytics tools coupled with risk-informed methods to manage plant assets and performances

Outline

Goals: 0&M reduction costs

- Reliability/ageing management
- Enhance system performance
- Optimize plant resources

Resource Optimization

- Project prioritization
- Project actuation planning
- Job scheduling

Risk Analytics Platform

ER Data Analytics

- Anomaly detection
- Diagnostics
- Prognostics

Digital Modeling

- Integration of reliability and economic models
- Margin reliability solver

Outline

Goals: O&M reduction costs

- Reliability/ageing management
- Enhance system performance
- Optimize plant resources

Resource Optimization

- Project prioritization
- Project actuation planning
- Job scheduling

ER Data Analytics

- Anomaly detection
- Diagnostics
- Prognostics

Digital Modeling

- Integration of reliability and economic models
- Margin reliability solver

ER Data Analytics

- State of practice: Focusing on finding patterns from data
 - Data can be misleading!
- Data elements: Heterogenous ER data format
 - Textual (events, logs): Defined over time point or time interval
 - Numeric (e.g., pump oil temperature)
- Our work: <u>Causal</u> reasoning behind patterns
 - Integrate numeric and textual data
 - Infer causal relationship among data elements
 - We need to use data along with models
- Approach: Merge two perspectives
 - System engineer
 - Data scientist
- Applications

5

- Anomaly detection: Find abnormal behavior from normal conditions
- Diagnostic: What caused the abnormal behavior?
- Prognostic: What are the consequences?
- Integration of ER data into plant digital models

Are both these elements adequately analyzed simultaneously?

Not all patterns tell us something about the system

System Engineer Perspective

- Employ Model Based System Engineering (MBSE) representation of systems and components
 - Large use of diagrams
 - MBSE languages: started with OPM (soon extended to SysML)
 - Diagram elements
 - Form
 Function
 Dependencies
 Uses
 - Understand "what a text is talking about"
 - Foundational models to identify causal links between data elements
- Emulate system engineer knowledge about component/system architecture

System Engineer Perspective

• Link to ER data

Dependencies are the main ingredients to perform causal reasoning

Data Scientist Perspective

- Data scientist view: Discover causal relationship between data elements
 - Integrate ER data with system/component MBSE models
 - Directed Acyclic Graph (DAG) based data structure
- Challenge: Integration of textual and numeric data
 - Approach: Symbolic conversion of all data elements

Analysis of Textual Data

Example

Goals: O&M reduction costs

- Reliability/ageing management
- Enhance system performance
- Optimize plant resources

Resource Optimization

- Project prioritization
- Project actuation planning
- Job scheduling

Risk Analytics Platform

ER Data Analytics

- Anomaly detection
- Diagnostics
- Prognostics

Digital Modeling

- Integration of reliability and economic models
- Margin reliability solver

Issues with Current Reliability Approaches

- Is ER data effectively integrated into plant reliability models?
 - Easy for components designed to run to fail (i.e., MTTF)
 - What about condition, diagnostic, and prognostic data?
- State-of-the-art reliability modeling
 - Bounded by language based on failure rate or failure probability concepts
 - E.g., linear ageing model
 - Does use of "system failure probability" support ongoing decision-making?
- Thoughts on the concept of failure rate
 - Rate of occurrence of an aleatory variable
 - Assume testing, surveillance, diagnostic/prognostic monitoring are performed
 - Am I still dealing with an aleatory variable?

• Discussion during car trip (February 2020)

- "Every time we talk about system/component failure probability we lose system engineers attention."
- "We need to change language such that we can link ER data to decisions."
- "System engineers are more used to the concept of margin."
- "What if we link ER data to decisions in terms of margins?"
- **Margin definition**: The "**distance**" between present/actual status and an (estimated) undesired status for a specific component

- What if we talk about reliability in terms of margins?
 - This change implies a **redefinition of risk**

Corrective maintenance

Condition-based maintenance

- System reliability models are typically based on fault trees
 - Deterministic models that depicts system architecture from a functional perspective
 - Boolean algebra operations used to calculate top event probability (set theory based)
- Can I use fault trees to propagate margin values up to the top event?

- Margin calculations can be **carried out directly from the minimal cut (or path) sets** generated by any PRA code
- Operation through metric spaces are much faster compared to Boolean logic operations

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Operation	Set based	Margin based
A OR B	$P(A) + P(B) - P(A \cup B)$	$\min(\widetilde{M}_A, \widetilde{M}_B)$
A AND B	P(A B) P(B)	$\sqrt{\widetilde{M}_A^2 + \widetilde{M}_B^2}$

- Several SSC are characterized by several failure modes
 - Each failure mode is modeled through its own margin
- Risk importance measures
 - Borrowed from sensitivity analysis theory: $S_{BE} = \frac{\partial \widetilde{M}(TE)}{\partial \widetilde{M}(BE)}$
- Applications
 - Monitor system/plant health
 - Prioritize failure modes that impact system/plant reliability

Links Between Reliability Modeling Approaches

Goals: O&M reduction costs

- Reliability/ageing management
- Enhance system performance
- Optimize plant resources

Resource Optimization

- Project prioritization
- Project actuation planning
- Job scheduling

Risk Analytics Platform

ER Data Analytics

- Anomaly detection
- Diagnostics
- Prognostics

Digital Modeling

- Integration of reliability and economic models
- Margin reliability solver

Plant Resources Optimization

Resources: personnel, budget, assets, time

What does optimization mean?

- Maximize value of spent \$
- Minimize maintenance crew activities
- Maximize ER workforce productivity
- Maximize SSC lifecycle performance (availability/reliability)
- Minimize SSC lifecycle cost

Applications

- Task scheduling (short-term horizon decisions)
- Project planning and scheduling (long- and mid-term horizon decisions)
- A simulation-based approach
 - Optimization methods
 - <u>Data based</u>: linear integer (deterministic, stochastic, distributionally robust)
 - Model based: single- and multi-objective
 - E.g., gradient-based, genetic algorithms, Pareto frontier
 - Integrate reliability and economic models

Multi-Objective Optimization

- **Objective:** balance multiple factors in the decision process
 - E.g., costs and reliability
- Applications
 - Determine optimal set of maintenance activities
 - Evaluate optimal alternatives for maintenance posture
 - Determine system optimal monitoring configuration
- Method: Multi-objective optimization
 - 1. Trade-off exploration: evaluate system costs and utility for several options
 - 2. Identify Pareto frontier
 - 3. Propagate uncertainties
 - 4. Impose utility/cost constraints

Project Prioritization/Scheduling

- Goal: Select optimal set of projects and actuation schedule that maximizes overall NPV
- Input data: Candidate projects (e.g., SSC replacement)
 - Options for each project (timing, duration, and costs)
 - Budget constraints per year and per resource (e.g., capital funds, O&M funds)
 - Consequences of stochastic events (e.g., SSC failure)
- **Output data:** Selected projects and prioritization and optimal project schedule

	T1	T2	T3	T4	T5	T6	Diale
	\$ 50K	\$ 90K	\$ 90K	\$ 90K	\$ 70K	\$40K	K1SK
M1-B		\$40K					0.25
M2-B			\$ 50K				0.36
М3-В				\$35K			0.18
M4-A				\$40K			0.18
M5-A		\$45K					0.2
M6-A	\$25K						0.168
M7-A			\$ 30K				0.72
Total	\$25K	\$ 85K	\$ 80K	\$75K	0	0	2.058

Task Scheduling

- Applications
 - Scheduling of maintenance and surveillance activities
 - Scheduling of outage activities
- Input data
 - Crews (skill set, availability)
 - Tasks (duration, dependencies, skills)
- **Objective:** minimize time to perform all tasks
- Methods
 - Mixed integer linear optimization
- Output data
 - Task schedule assigned to each crew

Conclusions

Project overview: Linking data to decisions

ER data analytics

- Causal inference of numeric data and events
- System and data perspective: moving away from a data-driven mindset

Reliability modeling using margin-based solvers

- Easy integration of data analysis methods
- Compatible with employed system reliability models (fault trees)
- Complete and explainable representation of system plant health
 - Target both system engineers and plant managers/decision-makers
- Support plant health/asset management decisions through explainable models/data

Plant resource optimization

- Long-term: Prioritization projects that provide higher value
- Medium-term: Project execution planning
- Short term: Job scheduling

Backup Slides

CCFs, Probability and Margin Calculations

Analysis of Textual Data

- Two classes of textual reports have been defined
 - 1. Class 1: reports that describe
 - Event (e.g., SSC malfunction)
 - Information about SSC health (e.g., excessive corrosion on pump impeller)
 - 2. Class 2: reports that describe a causal relation between two nodes
- NLP analysis pipeline
 - Syntactic analysis
 - Sentence segmentation and word tokenization
 - Part of speech (POS) tagging
 - Named entity recognition (NER)
 - Semantic analysis (Information extraction)
 - 1. Identification of specific nouns, verbs and adjectives
 - 2. Identify the sentence logic structure _____
 - 3. Identify OPM elements (form or function)
 - 4. Reconstruct DAG element
 - Class 1: (Comp.; OPM elem.; health)
 - Class 2: (Comp.; OPM elem.; health) \rightarrow (Comp.; OPM elem.; health)

ok, degraded, failed or anomalous

Status nouns	Status verbs	Status adjectives		
Failure	Fail	Unable		
Degradation	Degrade	Ineffective		
Breach	Break	Anomalous		
Fracture	Decline			

Health status

Integration of Textual and Numeric Data

