

ANS/NRC Workshop to Develop a Strategic Vision for Advanced Reactor Standards

May 2, 2018 | 8:30 a.m. to 4:30 p.m. EDT U.S. Nuclear Regulatory Commission Three White Flint North 11601 Landsdown Street North Bethesda, MD

On May 2, 2018, the American Nuclear Society (ANS) and the U.S. Nuclear Regulatory Commission (NRC) sponsored a workshop for industry partners to develop a strategic vision and path forward for advanced reactors standards. The workshop provided an opportunity for designers, vendors, owners, regulators, and representatives of standards development organizations (SDOs) to discuss standards needs to support advanced reactors. There were 121 participants either in person or remotely. (see Attachment 1 for a full list of attendees and Attachment 2 for webinar participants). A summary of the workshop is provided below.

1. Introductions

ANS Standards Board Chair Steven A. Arndt welcomed and thanked all for participating. The purpose of the workshop was explained. ANS President Robert Coward was introduced. He emphasized the importance of this workshop. He explained that he has come to two conclusions this year during this travels: 1) There is no nuclear future without nuclear today, and 2) The nuclear future doesn't look like it does today. We need to firm up the foundation and create a new nuclear future. This workshop is building the bridge. Coward urged attendees to reach out and encourage young professionals to join this effort. Lastly, he stated that we need standards that lead and guide nuclear facilities that address user needs.

Arndt continued stressing that the workshop was a goal setting forum. He reviewed the logistics for the workshop and the breakout questions each technology was asked to address. See Attachment 3 for Arndt's presentation providing more detail.

2. Presentations of Needs by Technology Working Groups

Technology Working Group (TWG) representatives for fast reactors, high temperature reactors, and molten salt reactors each presented information related to standards needs in there technical areas. Matthew Miller presented on behalf of the high temperature reactor group. Jason Redd presented for the molten salt reactor group. Paolo Ferroni stepped in at the last minute to represent the fast reactor group on behalf of TWG chair Jason DeWitte. Each presentation included a technology overview and indicated whether they have any unique features. Potential areas for future standards needs were identified. Presentations are available as follows:

- High Temperature Reactor Technology Working Group—Attachment 4
- Molten Salt Reactor Technology Working Group —Attachment 5
- Fast Reactor Technology Working Group—Attachment 6

TWGs recognized the benefit of standards, particularly endorsed standards. Standards were preferable, but if not available, designers would need to prepare their own guidance. The lack of a standard was not expected to delay development of advanced reactors. Several topical areas for standards were recommended for further discussion during the breakout sessions.

3. Breakout Sessions (by Technology)/Summary Preparations

Workshop participants divided into three groups by technology—fast reactors, high temperature reactors, and molten salt reactors—to discuss the assigned questions. Discussions were summarized to report back to the full group.

4. Presentations on Breakout Session Results

Workshop participants reassembled for a report of breakout sessions results. Representatives reporting on discussions were Peter Hastings for the high temperature breakout group, Jason Redd for the molten salt reactor group, and Paolo Ferroni for the fast reactor group. Responses to the five breakout questions for the three technology groups are provided below in table format for comparison. Presentations from the high temperature breakout groups (Attachment 7) and the fast reactor breakout group (Attachment 8) provide additional details.

1. For your technology, what would you say is the current status of standards to support the development, design, and licensing of advanced reactors? Are most of the needed standards available up to date? Do they cover the issues that have the most significant impact on the design? On the schedule?

High Temperature Reactors	Molten Salt Reactors	Fast Reactors
 Generally speaking, sufficient for both licensing and design ASME NQA-1, Quality Assurance, stability to be sought later Evaluation of ANS-53.1, Modular Helium-Cooled Reactor (MHR) Design Process; ANS-30.1, Risk-Informed/Performance-Based (RIPB) Principles and Methods; ANS-30.2, Categorization and Classification of Structures, Systems, and Components (SSCs); in parallel with and informed by the Licensing Modernization Project (LMP) worthwhile and timely LMP resolution Consistency between ANS-53.1, MHR Design Process, and others 	 Agrees that what is currently available is sufficient to move forward Instrumentation and control (I&C) is the most important area Environment safety also important Would like to have a performance based-standard for acceptance criteria 	 Existence of standards is not a requirement but is important to accelerate licensing Existing standards represent a good starting point; however, they are not always up-to-date and/or best-suited for non-light water reactor (LWR) technologies Some high-priority standards (schedule-wise) would benefit from modifications, (e.g. ASME NQA-1, Quality Assurance) Would like existing standards (~860) grouped in high-level categories to facilitate their identification and priority-based use; work done at Oak Ridge National Laboratory for sodium fast reactor standards can be leveraged

updating to support development	t, design, and licensing. Why are th	hey your top five?
High Temperature Reactors	Molten Salt Reactors	Fast Reactors
 ASME/ANS RA-S-1.4-2013, PRA for Non-LWRs (trial use) ANS-30.1, RIPB Principles and Methods (in development) ANS-30.2, Categorization and Classification of SSCs (in development) ANSI/ANS-53.1-2011 (R2016) MHR Design Process ANSI/ISA 67.02.1-2014, Safety Related Instrument-Sensing Line Piping and Tubing ASME BPVC, Sec III, Div. 5, and related codes for welds, piping, etc. Potential revisions to ASTM standards consistent with code requirements 	 ANS standards on research reactors (ANS-15.X) are the most important; these standards need to be reviewed to determine if changes are needed ANS-30.1, RIPB Principles and Methods (in development) ANS-30.2, Categorization and Classification of SSCs (in development) ANSI/ANS-53.1-2011 (R2016) MHR Design Process ASME Sec. III, Div. 5 Inservice Inspection (ISI) in Sec. II, Div. 2, will be of interest as it is being revised technology neutral next year Welding materials – ASTM and/or AWS may need to add; braising (like welding) may be needed ASME Operation and Maintenance Code ACI 349, Concrete Structures for high flux 	 ASME NQA-1, Quality Assurance (design, construction, and operation) ANS-3.2, Quality Assurance (managerial and administrative controls) ANS-57.1, Design Requirements for Fuel Handling Systems ANS-54.2 (withdrawn), Fast Breeder Reactor Spent Fuel Storage ASME BPVC, Sec. III, Div. 5, for environmental effects (mainly corrosion), cladded structural materials ASME BPVC, Sec. XI, to capture features specific to fast reactor technologies

2. List the five most current important standards (from any SDO) to your area that are in need of

3. List the five most important technical areas that need standards development (where they currently don't have standards). Why are they your top five?			
High Temperature Reactors	Molten Salt Reactors	Fast Reactors	
 RIPB "suite" ASME BPVC, Sec. VIII, cyclic loads for high temp Design life for ASME BPVC, Sec. VIII, and Sec. III, Div. 5 Fiber optic (specifically) and qualification of I&C for high temp ASME BPVC, Sec. XI, "fitness for service" high-temp failures ISI – team formed to evaluate 	 Advanced manufacturing Fuel salt purity Radioactive material packaging, handling, shipping for products with salt residue; goal to reduce packaging. Tech neutral standard would be beneficial Chemistry and corrosion control; inspection and testing for corrosion 	 Source term assessment for non-LWRs (would support emergency planning zone size reduction) Casks for shipping and dry- storage of high assay low- enriched uranium (LEU) Startup testing and reliability measurement of passive safety systems. Note: highest priority is for reactor vessel auxiliary cooling systems (RVACS) (suggested to reach an industry-agreed method to assess RVACS and address it in licensing phase) 	

don't have standards). Why are	they your top five?	
High Temperature Reactors	Molten Salt Reactors	Fast Reactors
		 Materials joining such as printed circuit heat exchangers (and diffusion bonding in general) and silicon carbide Multi-use, inter-operability components—standardization of component interfaces to ease and increase level of modularity in construction Additive manufacturing Standards applicable to some specific features of microrreactors for "niche" applications (e.g. remote control and security aspects) Digital technology (e.g. use of off-the-shelf computer applications to standardize digital technology implementation)

3. List the five most important technical areas that need standards development (where they currently don't have standards). Why are they your top five?

4.	Provide some prioritization of the two lists, both in overall need (must have to move forward) and in
	timing (need by a certain date). If possible, provide insights as to why the standard has priority and
	what aspect of the issues are driving the priority.

High Temperature Reactors	Molten Salt Reactors	Fast Reactors
1. RIPB-related standards	Felt it is too early to prioritize	Above list in question #3 is
2. Everything else		provided in decreasing order of
		importance
Sub-prioritized by what needs		
development, what needs revision,		
and/or what needs endorsement		
From question 2:		
1. Any changes needed for RIPB		
licensing		
a) ASME/ANS RA-S-1.4-2013,		
PRA for Non-LWRs (trial use)		
b) ANS-30.1, RIPB Principles		
and Methods (in		
development)		
c) ANS-30.2, Categorization and		
Classification of SSCs (in		
development – related to		
LMP)		
d) ANSI/ANS-53.1-2011 (R2016)		
MHR Nuclear Safety Design		

American Nuclear Society

			my are standard has priority and
	what aspect of the issues are driving the priority.		
Hi	gh Temperature Reactors	Molten Salt Reactors	Fast Reactors
2.	ANSI/ISA 67.02.1-2014, Safety		
	Related Instrument-Sensing Line		
	Piping and Tubing		
3.	ASME BPVC, Sec. III, Div. 5,		
	and related codes for welds,		
	piping, etc.		
4.	Potential revisions to ASTM		
	standards consistent with code		
	requirements		
_			
Fre	om question 3:		
1.	RIPB "suite"		
2.	Sec. VIII cyclic loads for high		
	temp		
3.	Design life for Sec. VIII and Sec.		
	III, Div. 5		
4.	Fiber optic (specifically) and		
	qualification of I&C for high temp		
5.	Sec. XI "fitness for service" high-		
	temp tailures ISI – team formed		
	to evaluate		

4. Provide some prioritization of the two lists, both in overall need (must have to move forward) and in timing (need by a certain date). If possible, provide insights as to why the standard has priority and what aspect of the issues are driving the priority.

5. A) What cross-cutting issues do you believe need to be included in the development of new standards for advanced reactors or the updating of current standards? These could include analysis methods (like probabilistic risk assessment, thermal hydraulics, human factors, etc.) or other cross-cutting issues like staffing, emergency management, advanced instrumentation, and control, security, etc.

 All of the above (except for ANS- 53.1, MHR Nuclear Safety Design) Process/understanding of how to Standardization of material High assay LEU fuel transportation/storage Safety-significance-based classification of SSCs within 	High Temperature Reactors	Molten Salt Reactors	Fast Reactors
 Process/understanding of now to raise code issues and get them resolved quickly Accelerating research and standards development Application of demonstration/prototype approach Recognition of/ideas for taking optimum credit for mod/sim vs. testing Resolution of the solution of the solutic the solution of the solutic term of the solution of the solu	 All of the above (except for ANS- 53.1, MHR Nuclear Safety Design) Process/understanding of how to raise code issues and get them resolved quickly Accelerating research and standards development Application of demonstration/prototype approach Recognition of/ideas for taking optimum credit for mod/sim vs. testing 	 Emergency management less of a concern with safer advanced reactors Standardization of material accountability control method Intersection of human factors, simulation assisted engineering, tightly coupled I&C Alarms management Digital I&C, ISG-05 on highly integrated control room Molten salt reactor safeguards Test procedure and data format for characterization of salt 	 High assay LEU fuel transportation/storage Safety-significance-based classification of SSCs within ASME NQA-1 Source term assessment (accounting for coolant-specific radionuclide retention capability; confinement vs. containment) Passive systems analysis/qualification

American Nuclear Society

	standards? What should drive this decision?			
Η	gh Temperature Reactors	Molten Salt Reactors	Fast Reactors	
•	 Performance based? Maintain existing top level regulatory criteria Performance-based criteria as a more easily demonstrated metric to show we meet top level regulatory criteria is a good thing LMP-type approach identifies what is important in terms of 	 Prefers performance-based standards over prescriptive standards Prescriptive method recognized as needed in some cases 	 Key driver is cost Recognized that RIPB is likely more onerous effort on the regulator Standards should be outcome- focused to avoid need for design modifications to comply with overly prescriptive criteria 	
	 functional outcomes, other prescriptive "requirements" should not apply Additional discussion needed to translate this concept (currently being applied at regulatory framework level) to standards level 			
•	 Risk informed? Yes, within reason Defense in depth is important, but so is knowing when "enough is enough" 			
•	 What is driver? Ensuring effective/efficient licensing process through safety-focused review Reducing cost of plant Lack of meaningful deterministic safety framework for non-LWRs 			

5. B) Is there a preference across the advanced reactor industry that future advanced reactor standards be more performance based and use high-level, risk-informed principles compared to current standards? What should drive this decision?

It was estimated that there are over 800 existing standards (current and withdrawn) but that very few people have a comprehensive knowledge of all standards. Participants were informed of a list of consensus standards used by the NRC that may be of interest. The list can be found on NRC's website at https://www.nrc.gov/about-nrc/regulatory/standards-dev/consensus.html.

6. Meeting Summary and Actions

Several standards and codes emerged as priorities between technology groups as candidates for updating and/or harmonization. Responsible SDOs are asked to follow up on the following standards and standards projects to insure their usefulness and availability to advanced reactors. It should be noted that TWG and stakeholder engagement will be necessary to adequately address needs.

American Society of Mechanical Engineers (ASME)

ASME NQA-1-2017, "Quality Assurance Requirements for Nuclear Facilities Applications" ACTION: Examples of issues in applying NQA-1 to non-LWRs to be considered:

- Subpart 2.2 (QA Requirements for Packaging, Shipping, Receiving, Storage, and Handling of Items for Nuclear Facilities). Concerns with classification levels (a, b, c, d) "based on important physical characteristics and not upon the important functional characteristics of the item with respect to safety, reliability, and operation."
- Subpart 2.5 (QA Requirements for Installation, Inspection, and Testing of Structural Concrete, Structural Steel, Soils, and Foundations for Nuclear Power Plants). Implicit assumptions on installation, inspection and testing of different concrete, steel, foundation, soil, earthwork, equipment and other items and their quality requirements regardless of importance to safety and based on LWR experience.
- Subpart 2.15 (QA Requirements for Hoisting, Rigging, and Transporting of Items for Nuclear Power Plants). Similar concerns on classifications based off of LWR experience for categories A-C.
- Subpart 2.20 (QA Requirements for Subsurface Investigations for Nuclear Power Plants). Possibly less critical, but subsurface QA requirements based on LWR experience and LWR importance to safety of the soil and seismic effects.

ASME Boiler Pressure Vessel Code, various sections (III, VIII, XI) and various divisions ACTIONS: Areas to be considered for potential inclusion or update include:

- welds, piping, etc.
- inservice Inspection
- Construction rules
- environmental effects (corrosion)
- cladded structural materials
- Cyclic loads
- fitness for service
- design life
- additive manufacturing

American Nuclear Society (ANS)

ANS-30.1-201x, "Integration of Risk-Informed, Performance-Based Principles and Methods into Nuclear Safety Design for Nuclear Power Plants" (new standard in development) ACTION: Completion of standard; harmonization with other standards and the LMP effort

ANS-30.2-201x, "Categorization and Classification of Structures, Systems, and Components for New Nuclear Power Plants" (new standard in development) ACTION: Completion of standard; harmonization with other standards and the LMP effort

ANSI/ANS-53.1-2011 (R2016), "Nuclear Safety Design Process for Modular Helium-Cooled Reactor Plants"

ACTION: Review current standard for consistency with other standards and the LMP effort

Institute of Electrical and Electronics Engineers (IEEE)

IEEE I&C standards including IEEE Std. 603 and IEEE Std. 323 and the supporting standards

ACTION: Incorporate fiber optics and qualification to higher temperatures and different environments.

Other areas that emerged as topics for potential new standards, standards that may need to be revised, or general areas to be considered by SDOs are listed below. It should be noted that TWG and stakeholder engagement will be necessary to define or clarify specific needs to proceed.

American Concrete Institute

ACI 349-13, "Code Requirements for Nuclear Safety-Related Concrete Structures" ACTION: Explore need for revision of current standard to address advanced reactors

American Nuclear Society

ANSI/ANS-3.2-2012 (R2017), "Managerial, Administrative, and Quality Assurance Controls for the Operational Phase of Nuclear Power Plants" ACTION: Explore need for revision of current standard to address advanced reactors

ANS-15.X. Series of standards for research reactors

ACTION: Evaluate research reactor standards for applicability to advanced reactors

ANSI/ANS-18.1-2016, "Radioactive Source Term for Normal Operation of Light Water Reactors"

ACTION: Explore need for revision of current standard to address advanced reactors

ANSI/ANS-54.2-1985 (W1995), "Design Bases for Facilities for LMFBR Spent Fuel Storage in Liquid Metal Outside the Primary Coolant Boundary" ACTION: Explore need for reinvigoration of historical standard to address advanced

reactors

ANSI/ANS-57.1-1992 (R2015), "Design Requirements for Light Water Reactor Fuel Handling Systems"

ACTION: Explore need for revision of current standard to address advanced reactors .

American Society of Mechanical Engineers (ASME)

ASME OM 2017, "Operation and Maintenance of Nuclear Power Plant Code" ACTION: Explore need for revision of current code to address advanced reactors

American Society of Mechanical Engineers/American Nuclear Society (ASME/ANS)

ASME/ANS RA-S-1.2-2014, "Severe Accident Progression and Radiological Release (Level 2) PRA Standard for Nuclear Power Plant Applications for Light Water Reactors (LWRs)"

ACTION: Trial use standard to be finalized and seek approval of the American National Standards Institute

American Society of Testing and Materials (ASTM)

ACTION: General suggestion to evaluate need for revisions to ASTM standards consistent with code (e.g., welding materials, brazing, reactive and refractory metals and alloys under the B10 Committee); also to explore standardization of additive manufacturing

American Welding Society

AWS welding/brazing standards

ACTION: Evaluate welding/brazing standards for potential need to update for advanced reactor use

International Society of Automation (ISA)

ANSI/ISA 67.02.1-2014, "Safety-Related Instrument Sensing Line Piping and Tubing Standard for Use in Nuclear Power Plants" ACTION: Evaluate need for update of current standard for high temperature

Unassigned topical areas needing standardization for advanced reactors that may be taken up by the most appropriate SDO

- Performance-based standard for acceptance criteria (all SDOs)
- Advanced manufacturing
- Fuel salt purity
- Radioactive material packaging handling, and shipping for products with salt residue

Topics for future workshop discussions recognized include:

- Defense in depth
- Harmonization with LMP approach
- Acceleration of standards development; possible funding support to help
- Unique aspects related to seismic
- Reducing loads and structures

Miscellaneous actions:

- Prepare and group a list of existing standards (~860) in high-level categories to facilitate their identification and priority-based use
- Encourage more vendor and international participation at subsequent meetings and workshops
- All SDOs to reinforce industry preference for RIPB methods to be used when developing or updating a standard or code

The next NRC Standards Forum will be scheduled for September of this year at NRC and was thought to be a good opportunity to continue discussions of need actions, prioritization, and next steps.

In closing, Steven Arndt expressed the sentiment that the workshop had great interaction and cooperation from all. He added that there were two main actions, they are to reach out to SDOs of standards that were identified and to reach out to the TWGs with the information gathered today to help establish the next steps.

7. Adjournment

Dr. Steven Arndt thanked all for participating before adjourning the workshop.

List of Attachments		
Attachment 1	Workshop Sign In Sheets	
Attachment 2	Webinar Participation Reports	
Attachment 3	Welcome/Logistic Presentation (ANS Standards Board Chair Steven Arndt)	
Attachment 4	High Temperature Reactor TWG Presentation (Matthew Miller)	
Attachment 5	Molten Salt Reactor TWG Presentation (Jason Redd)	
Attachment 6	Fast Reactor TWG Presentation (Paolo Ferroni on behalf of Jason DeWitte)	
Attachment 7	High Temperature Breakout Session Summary Presentation (Peter Hastings)	
Attachment 8	Fast Reactor Breakout Session Summary Presentation (Paolo Ferroni)	

ANS/NRC Advanced Reactor Standards Workshop

May 2, 2018 Three White Flint North, North Bethesda, MD <u>Attendance Sheet</u>

Attachment 1

Name	Company	Email Address
AMIR AFZALT	SOUTHEREN COMPANY	AAFZALTA SOUTHERNCO. COM
JASON REDID	11	jpredd @ southernco.com
John Bolin	General Atomics	john boline ga.com
MILLE TSCHILTZ	NEJ	matene: , org
ED WALLACE	GNBC Azioc	ed wallace (GNBCassacides . Co
ROBERT KEATING	MPR Assa Sec. TH	rKeating Ompr. aun
George Flanging	ORNL RARCC	Slangson 45 @ OANL.gov
CHRISTOPHER PENDLETON	SOUTHERN COMPANY	enpendle@southernco.com
Jan Mazia	NRC	jan. Mazza@ Arc. gov
Pete Gaillard	TerraPower	papillard a truinpower.com
Feter Hastings	Kairros Power	hustings alcaires puwer ion
MARK HOLBROOK	Idaho National Lab	mark. holbrock@inl.gov
Jeff Terry	Illinois Tech	Terry; @ jit. edu
Pony Hoce	NRC	amy hull and o
Idenie Prokoficy	NRC	Ideni-Protofievante
Jana Bergman	CLERTTSSICK IGHT	J Bergman O CUNTSSURIGHT. LONI
TL Sham	Argonne Natural Et	ssham@anl.gov
TODD ALLEN	V. WISCONSIN	allen@engr.w.sc.edu
Mather Fordon	NRC	Matthew. gordin (INRC. Gov
Any Cubbace	NRC	Any. altay @NAC. Gur
Tuan Le	NRC	Than LE DIRC. AUV
TOM BOYCE	NRC	TOM. BOYCE @ NRC. GOV
ALICE CAPONITI	DOE	alice. caponiti Cenergy.gov
Sara Lyons	NRC	Sara. Yons@nrc.gov
Jim O'trien	DOE NENFEL	

Sheet 1 of 4

Thank You.

ANS/NRC Advanced Reactor Standards Workshop

May 2, 2018 Three White Flint North, North Bethesda, MD <u>Attendance Sheet</u>

Name	Company	Email Address
M, Ke Muhlheim	ORNL	muhlheimndwornligov
Steve Flegy	NR(, IEEE	Styphyn. Flegerce ASC. au/
Bib (owald'	MPN/AWS	ROWANS e MAR Con
GREGE GIBSON	X EWERGY	GGIBSON () K-ENERGY, Com
Kati Austgen	NEI	Kra@nei.org
Keith Consani	self	Keith, consonia Rist. 52
Murray Medlock	Southern Nuclear	mmedlock Q gouthernco, com
Shiend Rubn-	NUMARIZ	Solve Solvi & NENSON Net
Oliver MARTINE 7	ASME	MARTINEZO @ASME ONP
Dav.d. Hillyer	Every Solutions	duhillyer @ hotmeil. cast
Shiveni Mehita	NRC	Q
Ruth Raps-Melde	rudo NRC	
PAOLO FERRONI	WEST/NG-140056	FERRONRO WESTINGHOUS
Byan Friedman	Westinghouse	friedmon @ westinghouse ing "
ALEX PAYLAE	FUTCHORE OF EDERSY	ALESZES PAYLAKOET
JEM KENSEY	DOE - FDAHO NATL LAB	Jim. Kinsey@inl.gov
Pat Schroeder	ANS	pschroeder alans. or
Steven Arndtpr	NRC	
John Fabians	ANS	fabian Dans.org
× 0		

Thank You.

ANS/NRC Advanced Reactor Standards Workshop

May 2, 2018 Three White Flint North, North Bethesda, MD <u>Attendance Sheet</u>

Name	Company	Email Address
Temps Greshum	Westinghouse	greshaje@westinghouse.com
Everett Redmont	NEI	elveneivorg
Stoven Kline	Bechtel	Suskeline @ becktel.com
Matt Miller	Franctomp	matt. miller @ Evamatore, com
Cristian Marcinlesa	EPRI	comarcialescu (alpri, con
Suzaime Dennis	NRC	
(RISTINA ORRALES	TETNATIOM	condespateination.es
ALAN LENN	DDE	alan levin Phy. doe. gov
RITA BARANWAL	GAIN	rita baranwal chint gov
Jim Nestell	MPR Assoc.	jnestellempr.com
Nicholas Mc Murray	US NRC	Nicholas. Mc Murray @nrc.go.
Steve MAWN	ASTM	
Andrew Vestmile	NRC	Andrew. Yeshnik @nrc.gov
Bill Recikley	MRC	with reckly enrear
Kim Verderber	ASME	verderberk@asme.org
VINCE LACKAM	TEA	VINCEPOTHORIUMERCISCAUMER COM
John Kelly	ANS	jekelly anse gmail, com
ATA ISTAIR	XIRE	daitarpur.gov.
1111		

Thank You.

ANS/NRC Advanced Reactor Standards Workshop May 2, 2018 Three White Flint North, North Bethesda, MD <u>Attendance Sheet</u>

	Name	Company	Email Address
	JOE WILLIAMS	NRC/NRO	JOSEPH, WILLIAMS @ NRC-COV
	Russ Bell	NE)	rjb@nei.org
	N. P. KADAMBT	ANS	Kodompecplagnad. Gu
	John Kutsch	TerrestrialVSA	Iketich @terrestrulusa.co
L	Jannifee Ulle	Jeplen Hullia	Alle a remember
ĺ	W. C. Horak	Care GAL	burkeh a lone
	John Scuala	NRCINRO	Tuhn, segah anra
0	CMRISTOPHER RECON	NRC/RES	CMRISTOPHER. PLAN () NRC. GUV
Ì	John Nakoski / ps	NRC	
	0		
Ì			
Ì			
Ī			

Advanced Reactor Standards Workshop (AM Session Webinar Report)

Report Generated: 5/2/18 4:33 PM EDT Webinar ID 900-706-611

Actual Start Date/Time 5/2/18 8:05 AM EDT

Duration 2 hours 24 minutes

Attendee Details

Last Name Algama Ashcraft August **BUDNITZ** Bass Beets Benson Bess Burg **Bussey** Byk Clark Cochran Crook Delrue Dennis Dube Finan Grimes Heidrich Holcomb lyengar Keller Konjarek Lanza Looney Lotto Mussatti **Odess-Gillett** Otgonbaatar PARK Parks Robinson Scarbrough

First Name	Email Address
Don	don.algama@nrc.gov
Joseph	joseph.ashcraft@nrc.gov
James	jkaugust@southernco.com
ROBERT	budnitz@pacbell.net
Derek	derek.bass@ge.com
Raymond	rdbeets@sandia.gov
John	John.Benson@alphatechresearchcorp.com
John	john.bess@inl.gov
Rob	rjb@epm-inc.com
Scott	scott.bussey@nrc.gov
Allyson	byka@asme.org
Andrew	ajclark@sandia.gov
Caroline	c@oklo.com
Timothy	tcrook@transatomicpower.com
Joe	jdelrue@msn.com
Matt	mldenni@sandia.gov
Donald	ddube@jensenhughes.com
Ashley	ashley@nuclearinnovationalliance.org
Brian	bk-jm-grimes@msn.com
Brenden	brenden.heidrich@inl.gov
David	holcombde@ornl.gov
Raj	raj.iyengar@nrc.gov
Mike	m.keller@hybridpwr.com
Damir	damir.konjarek@tractebel.engie.com
Robert	robert.lanza@icf.com
Patrick	patrick.looney@ge.com
Michael	mikerlotto1394@comcast.net
Daniel	daniel.mussatti@nrc.gov
Warren	odessgwr@westinghouse.com
Uuganbayar	uuganbayar.otgonbaatar@exeloncorp.com
JongSeuk	k050pjs@kins.re.kr
Leah	leah.parks@nrc.gov
Brian	brian.robinson@nuclear.energy.gov
Thomas	Thomas.Scarbrough@nrc.gov

Jennifer	Jennifer.Scro@nrc.gov
Maxine	maxine.segarnick@nrc.gov
Andrew	asowder@epri.com
Erin	e.spiewak@ieee.org
Don	dstatile@terrapower.com
Robert	robert.tregoning@nrc.gov
Won Sik	wonyang@umich.edu
Alex	msyoung@tva.gov
Andy	andy.zach@mail.house.gov
staci	staci@atrc.me
	Jennifer Maxine Andrew Erin Don Robert Won Sik Alex Andy staci

Advanced Reactor Standards Workshop (PM Session Webinar Report)

Actual Start Date/Time

Report Generated: 5/7/18 1:04 PM EDT Webinar ID 366-722-323 5/2/18 2:41 PM EDT

Duration 1 hour 58 minutes

Attendee Details .

Last Name	First Name	Email Address
Bass	Derek	derek.bass@ge.com
Bell	Russell	rjb@nei.org
Benson	John	John.Benson@alphatechresearchcorp.com
Bess	John	john.bess@inl.gov
Bryson	Kevin	kevin_bryson1@hotmail.com
Burg	Rob	rjb@epm-inc.com
Bussey	Scott	scott.bussey@nrc.gov
Cochran	Caroline	c@oklo.com
Crook	Timothy	tcrook@transatomicpower.com
Dube	Donald	ddube@jensenhughes.com
Finan	Ashley	ashley@nuclearinnovationalliance.org
Grimes	Brian	bk-jm-grimes@msn.com
Holcomb	David	holcombde@ornl.gov
Konjarek	Damir	damir.konjarek@tractebel.engie.com
MORITA	AKINOBU	akinobu0726@gmail.com
Odess-Gillett	Warren	odessgwr@westinghouse.com
PARK	JongSeuk	k050pjs@kins.re.kr
Poore	Mike	poorewpiii@ornl.gov
Popova	Alex	alex@oklo.com
Rhodes	Charles	CSLRhodes@gmail.com
Sowder	Andrew	asowder@epri.com
Spiewak	Erin	e.spiewak@ieee.org
Tschiltz	Michael	mdt@nei.org
Turk	Richard	rick.turk@comcast.net
Yang	Won Sik	wonyang@umich.edu
wheeler	staci	staci@alphatechresearchcorp.com

Meeting Logistics

American Nuclear Society

- The morning session from now until 10:30 a.m. EDT will be in these rooms.
- The breakout sessions will begin at 10:45 a.m. EDT in rooms
 - High Temperature TWG: 1C03
 - o Fast Reactor TWG: 2A39
 - o Molten Salt Reactor TWG: 1C05
- We will reassemble in this room at 2:45 p.m. EDT for breakout group reports and discussion.
- The first floor is public, but you need a NRC escort to get to the Fast Reactor TWG breakout room on the second floor.

 There are a number of NRC staff that are part of the workshop. If you have any questions about the logistics or the building, please ask one of them.

Society

Background, Purpose & Goal

- Need for this workshop identified at NRC Standards Forum held September 26, 2017.
- Platform provides designers, vendors, owners, regulators, and representatives of standards development organizations (SDOs) to discuss standards needs to support advanced reactors.

- Goal set to develop a strategic vision for a path forward and priorities for development of standards across all SDOs.
- Today is the first step.

American	Time (EDT)	Agenda Item
American	8:30 a.m.	Introductions
Nuclear Society	9:00 a.m. to 10:30 a.m.	Presentations of Needs by Nuclear Energy Institute (NEI) Technology Working Groups High Temperature Reactors Fast Reactors Molten Salt Reactors
	10:30 a.m. to 10:45 a.m.	Break
	10:45 a.m. to 12:00 p.m.	Breakout Sessions (by Technology)
	12:00 p.m. to 1:00 p.m.	Lunch – On Your Own
	1:00 p.m. to 2:00 p.m.	Breakout Sessions (Cont'd)
	2:00 p.m. to 2:30 p.m.	Breakout Session Summary Preparation
	2:30 p.m. to 2:45 p.m.	Break
X	2:45 p.m. to 4:00 p.m.	Presentations on Breakout Session Results
	4:00 p.m. to 4:30 p.m.	Meeting Summary and Actions
	4:30 p.m.	Adjournment

4

Society

Breakout Questions for Each Technology Group

- For your technology, what would you say is the current status of standards to support the development, design, and licensing of advanced reactors? Are most of the needed standards available up to date? Do they cover the issues that have the most significant impact on the design? On the schedule?
- List the five most current important standards (from any SDO) to your area that are in need of updating to support development, design, and licensing. Why are they your top five?
- 3) List the five most important technical areas that need standards development (where they currently don't have standards). Why are they your top five?
- 4) Provide some prioritization of the two lists, both in overall need (must have to move forward) and in timing (need by a certain date). If possible, provide insights as to why the standard has priority and what aspect of the issues are driving the priority.
- 5a) What cross-cutting issues do you believe need to be included in the development of new standards for advanced reactors or the updating of current standards? These could include analysis methods (like probabilistic risk assessment, thermal hydraulics, human factors, etc.) or other cross-cutting issues like staffing, emergency management, advanced instrumentation and control, security, etc.
- 5b) Is there a preference across the advanced reactor industry that future advanced reactor standards be more performance based and use high-level, risk-informed principles compared to current standards? What should drive this decision?

Question responses to be summarized and presented to group under "Breakout Session Results" scheduled from 2:45 p.m. – 4:00 p.m. EDT.

NEI Technology Working Group Presentations

NEI Technology Working Groups (TWGs) will provide a short summary of their technology including any design features outside current LWR technology that make current standards not applicable. Each TWG has been asked to provide their standards needs with priorities.

Presenters include the following:

- High Temperature TWG—Matt Miller
- Fast Reactor TWG—Jacob DeWitte
- Molten Salt Reactor TWG—Jason Redd

American Nuclear	Teleconference Details for Breakout Sessions		
Society	Parallel Breakout Sessions (10:45 a.m. to 2:30 p.m. EDT)	Teleconference Details	
	High Temperature Reactors Breakout Session Teleconference	Call in #: 888-324-7512 Participant passcode: 61172	
	Fast Reactors Breakout Session Teleconference	Call in #: 888-469-1550 Participant passcode: 22236	
	Molten Salt Reactors Breakout Session Teleconference	Call in #: 877-918-1353 Participant passcode: 31015	

Attachment 4

Typical Standards for for HTGRs			
Vessels	ASME Section III		
Reactor Internals	TBD - Section III Div. 5		
• SGs	TEMA helical coil standard		
Graphite	ASME Section III Div. 5		
• I&C	IEEE Standard (Analog or Digital)		
RCCS	ASME Section III		
Valves	TBD - ASME Section III		
Circulator	TBD - ASME Section III		
Silo Concrete	ACI standard		
 Refueling machine 	TBD robotics or elevator standards		
5/2/2018	Page 6		

Attachment 5

Strategic Vision for Advanced Reactor Standards Workshop

May 2, 2018

Molten Salt Reactors Technology Working Group Report By Jason Redd, PE

Technology Overview

- Molten Salt Reactors (MSR) utilize salt compounds in a liquid phase to provide reactor core cooling, neutron moderation, and/or fuel form. Typically operating at low pressure and high temperature, MSRs are capable of providing high quality steam or process heat for numerous uses. A wide combination of nucleonics, fuel, and coolant designs are under development.
- Characteristics of some MSR designs that differ from the operating LWR fleet include: higher coolant temperatures, potentially corrosive salt compounds, higher fast neutron exposure of reactor internals and vessel, and liquid fuel circulating outside of a conventional reactor vessel.

Benefit of Standards in the Licensing Process

- The National Technology Transfer and Advancement Act (March 1996) codified existing OMB guidance to Federal agencies to utilize consensus standards were appropriate.
- Reactor developers and the NRC Staff benefit from standards which can be reviewed once, and then be recognized as acceptable for use within the scope of the standard for other reactor designs.
 - Costs savings include designers not having to each develop and justify to the NRC Staff common techniques and processes.
 - NRC Staff benefits by not having to repeatedly consume review time and resources on issues common to multiple reactors.
- Consensus standards reflect a broader knowledge and experience base than any one reactor developer could provide which reduces the uncertainty inherent in any new design.

Top 10 Standards

- ACI Standard for concrete exposed to high service and accident temperatures;
- ANS-20.2 "Nuclear Safety Design Criteria and Functional Performance Requirements for Liquid-Fuel Molten-Salt Reactor Nuclear Power Plants";
- ANS-30.1 "Integrating Risk and Performance Objectives into New Reactor Nuclear Safety Designs";
- ANS-30.2 "Categorization and Classification of Structures, Systems, and Components for New Nuclear Power Plants";
- ASME/ANS RA-S-1.4 "Probabilistic Risk Assessment Standard for Advanced Non-LWR Nuclear Power Plants";

Priority Standards

- Among the preceding Top 10 standards, the below topics are the highest priority to a broad cross section of MSR developers; representatives of the MSR TWG will volunteer to support the below efforts:
 - ASME BPV Sec. III Div. 5 Need more material options such as high strength nickel alloys to broaden the approved material choices for high temperature applications;
 - ASME BPV Sec. III Direction regarding design, materials, and fabrication of structural components clad or lined with corrosionresistant materials;
 - ASTM Refractory alloys need development work i.e. welding techniques, fabrication techniques, joining techniques, understanding of embrittlement and fracture behavior.

Advanced Reactor Standards Workshop May 2, 2018

Fast Reactor Working Group

2

• Multiple developers working on multiple technologies

• Spans variety of fast reactor technologies in development

ARC	Columbia Basin	Elysium Industries
General Atomics	GE	Hydromine
Oklo	TerraPower	Westinghouse
Duke	Exelon	Southern
Studsvik Scandpower	EPRI	NEI

Industry Engagement

- Fast reactors offer a near limitless source of clean and affordable energy, which have attracted the participation of a diverse group of technology developers and other stakeholders
- The FRWG works with developers and fast reactor stakeholders to further the state-of-the-art
 - > Technology development
 - > Regulatory
 - > International collaboration

High Level Perspectives

- Diverse technologies spanning a spectrum of technical readiness with varying needs
- General consensus that standards need to be modernized as the industry grows, but are generally adequate to support initial deployment strategies
 - > Concerns about certain technology-specific gaps
 - > Concerns about standards development timeframes and delays

High Level Perspectives

- Standards are most effective when there are multiple industry stakeholders with significant technology maturity and overlap, who have a sophisticated understanding of what is needed in particular areas
- Must consider industry needs in light of industry maturity
- Standard modernization will become increasingly useful as the advanced reactor industry grows

Paradigm Shifts from LWRs

	LWRs (PWR & BWR)	Non-LWRs
Fuel	UO ₂	Metals, oxides, carbides, nitrides, salts
Cladding	Zirconium alloys	Steels, ceramics, no cladding
Coolant	Water	Sodium, lead, other liquid metals, gas, salts
Moderator	Water	Graphite, hydrides, no moderator
Spectrum	Thermal	Fast, epithermal, thermal
Temperature	280°C to 320°C	300°C to >850°C
Fuel cycle	Fuel cycle1 to 2 yearsUp to 60 years, possibly more	

Standards of Interest

• NQA-1

- > Useful to advanced reactor work currently
- > Continue to modernize as appropriate and as needed

Standards of Interest

• Materials

- > Structural alloys, cladding materials, and coating materials for the temperature ranges and fluences of interest
 - BPV code for GFR
- > Concrete considerations at high temperature and fluence
- I&C
 - > Spectral, material, temperature, and lifetime considerations
- Fuel and material handling variations

Standards of Interest

- Decay heat
 - > Different from LWR standard due to fast spectrum, fuel management, and fuel configuration variations
- Risk-informed design and risk analysis
 - > Important to consider implications of inherent safety characteristics
- General reactor design standards
- Varying considerations for fire protection, operations, offsite/backup power, and seismic standards

Standards Gaps

- Standards gap analysis efforts for sodium fast reactors provides initial insights into future standards needs
- This work benefits other technologies
 - Similar investigations may be desired, but results must be kept in context to technology and industry maturity

Attachment 7

HIGH TEMPERATURE TWG BREAKOUT

Advanced Reactor Standards Workshop 02 May 2018

IDENTIFIED AT MEETING INTRO

- ASME/ANS RA-S-1.4-2013 PRA for Non-LWRs (trial use)
- ANS-30.1-201x RIPB Principles and Methods (new)
- ANS-302.-201x Categorization and Classification of SSCs (new)
- ANSI/ANS-53.1-2011 MHTGR Nuclear Safety Design R2016
- ANSI/ANS-67.02.1-2014 Safety Related Instrument-Sensing Line Pipng and Tubing
- ASME Sec II Div 5 and related codes for welds, piping, etc.
- Potential revisions to ASTM stds consistent with code requirements

ADDITIONAL BRAINSTORMING

RISK-INFORMED, PERFORMANCE-BASED (CROSS-CUTTING)

Overall approach

- Licensing Modernization Project (LMP) product
 - NRC endorsement may moot/obviate need for certain code changes in near term
 - Is ANS 53.1 still needed given LMP?
 - Alignment needed with LMP; make broader?
 - 30.1 supposed to be tech-inclusive but 30.1 and 53.1 not closely aligned
- Limit inspections based on risk significance
 - Existing code at component level may not be readily apparent how system-level risk analysis translates
 - Ensure SSC classification is translated to component level
 - Non-safety-related but safety significant can be gray area (special treatment)
- RIPB for other areas, e.g., security
- Defense in depth quantification/specification

PRIORITIZATION/ WORKSHOP QUESTIONS

1. CURRENT STATUS

- Generally speaking, sufficient for both licensing and design
- NQA-1 stability sought (later)
- Evaluation (e.g., 53.1, 30.1, 30.2) parallel with and informed by LMP worthwhile and timely
 - LMP resolution
 - Consistency between 53.1 and others

3. TOP FIVE TECHNICAL AREAS

- Risk-informed, performance-based "suite"*
- Sec VIII cyclic loads for high temp*
- Design life for Sec VIII and Sec III Div 5*
- Fiber optic (specifically) and qualification of I&C for high temp*
- Sec XI "fitness for service" high-temp failures ISI team formed to evaluate*

High Temperature TWG Breakout

* cross-cutting

4. PRIORITIZATION OF LISTS

- From question 2:
 - 1. Any changes needed for RIPB licensing
 - a) ASME/ANS RA-S-1.4-2013 PRA for Non-LWRs (complete and endorse currently trial use)*
 - b) ANS-30.1-201x RIPB Principles and Methods (in development)*
 - c) ANS-302.-201x Categorization and Classification of SSCs (in development related to LMP)*
 - d) ANSI/ANS-53.1-2011 MHTGR Nuclear Safety Design R2016
 - 2. ANSI/ANS-67.02.1-2014 Safety Related Instrument-Sensing Line Pipng and Tubing*
 - 3. ASME Sec III Div 5 and related codes for welds, piping, etc.*
 - 4. Potential revisions to ASTM stds consistent with code requirements*
- From question 3:
 - 1. Risk-informed, performance-based "suite"*
 - 2. Sec VIII cyclic loads for high temp*
 - 3. Design life for Sec VIII and Sec III Div 5*
 - 4. Fiber optic (specifically) and qualification of I&C for high temp*
 - 5. Sec XI "fitness for service" high-temp failures ISI team formed to evaluate*

High Temperature TWG Breakout

* cross-cutting - didn't spend much time ranking

- All of the above (except for 53.1)
- Process/understanding of how to raise code issues and get them resolved quickly
 - Accelerating research and standards development
 - Application of demonstration/prototype approach
- Recognition of/ideas for taking optimum credit for mod/sim vs testing

5B. PREFERENCE FOR RIPB

- Performance based?
 - Maintain existing top level regulatory criteria
 - Performance based criteria as a more easily demonstrated metric to show we meet TLRC is a good thing
 - LMP-type approach identifies what is important in terms of functional outcomes, other prescriptive "requirements" should not apply
 - Additional discussion needed to translate this concept (currently being applied at regulatory framework level) to standards level
- Risk informed?
 - Yes, within reason
 - Defense in depth is important, but so is knowing when "enough is enough"
- What is driver?
 - Ensuring effective/efficient licensing process through safety-focused review
 - Reducing cost of plant
 - Lack of meaningful deterministic safety framework for non-LWRs

Attachment 8

Fast Reactor Working Group

Summary of break-out session

ANS/NRC Advanced Reactor Standards Workshop May 2, 2018

Q1: For your technology, what would you say is the current status of standards to support the development, design, and licensing of advanced reactors? Are most of the needed standards available up to date? Do they cover the issues that have the most significant impact on the design? On the schedule?

- Existing standards represent a good starting point
- However, they are not always up-to-date and/or best-suited for non-LWR technologies / fast reactors. Some high-priority standards (schedule-wise) would benefit from modifications, e.g. NQA-1
- Overall suggestion is to have existing standards (~860) grouped in high-level categories, to facilitate their identification and priority-based use. Work done at ORNL for SFR Standards can be leveraged

Q4: Provide some prioritization of the two lists, both in overall need (must have to move forward) and in timing (need by a certain date). If possible, provide insights as to why the standard has priority and what aspect of the issues are driving the priority

Prioritization already shown on previous slides

Q5a: What cross-cutting issues do you believe need to be included in the development of new standards for advanced reactors or the updating of current standards? These could include analysis methods (like probabilistic risk assessment, thermal hydraulics, human factors, etc.) or other cross-cutting issues like staffing, emergency management, advanced instrumentation and control, security, etc

- High Assay LEU fuel transportation/ storage
- Safety-significance-based classification of SSC within NQA-1
- Source term assessment (accounting for coolant-specific radionuclide retention capability; confinement vs containment)
- Passive systems analysis/qualification

Q5b: Is there a preference across the advanced reactor industry that future advanced reactor standards be more performance based and use high-level, risk-informed principles compared to current standards? What should drive this decision?

- Yes, there is such a preference!
- Key driver for risk-informing is COST
- Caveat in risk-informing: it will likely result in more onerous efforts by the regulator
- Recommendation for risk-informing: don't be too prescriptive. Standards should be outcomefocused. Need to avoid that developers are forced to modify their designs resulting in suboptimal performance (especially economics) "just" because they need to comply with criteria that are not outcome-based