# RISK-INFORMED PERFORMANCE-BASED (RIPB) DESIGN METHODS FOR EXTERNAL HAZARDS

Application of the Licensing Modernization Project (LMP) Criteria

Fred F. Grant

Principal - Simpson Gumpertz & Heger Inc.

American Nuclear Society

Risk-informed, Performance-based Principles and Policy Committee (RP3C) Community of Practice (COP)

4 April 2025



### Research Overview



### **Objectives**

- Evaluate ongoing industry activities on risk-informed performance-based (RIPB) design for external hazards following the Nuclear Energy Institute (NEI) 18-04 framework
- Identify challenges, gaps, and best practices for effective implementation for advanced reactors (ARs)

### **Approach**

- Literature review
- Stakeholder input through surveys, workshops, etc.
- Develop and execute demonstration design example (seismic)
- Summarize gaps, challenges, and best practices
- Publish insights in EPRI 3002029295 (September 2024)

Demonstration Example

### Framework Overview



# Purpose: Demonstrate key parts of the process; identify challenges & needs.

#### Nine basic steps:

- 1. Plant Response Model
- 2. Dose Functions
- 3. Seismic Hazard Characterization
- 4. Seismic Fragility Evaluation
- 5. Risk Quantification
- 6. Acceptance Criteria Review
- 7. LBE and SSC Classification and Risk-Significance Review
- 8. Design Revisions / Trade-
- 9. RIPB Design Decisions



LBE: Licensing Basis Event

SSC: Structure, system, or component

## Important Processes



#### Important processes exercised in the demonstration example:

- Defining LBEs (per NEI 18-04)
- Classifying LBEs and SSCs (per NEI 18-04)
- Iterating between design and probabilistic risk assessment (PRA) development / quantification
- Defining performance-based seismic design criteria and special treatments for SSCs
  - Includes code &standard (C&S) provision selection
- Estimating initial fragilities based on SSC's seismic design criteria
- Checking regulatory acceptance criteria following NEI 18-04 approach for external hazards
- Investigating options for design revisions and design decision-making



Figure 3-1. Frequency-Consequence Target

# Example System Model

Tank

#### General, AR-relevant model

• For each item in the model, establish initial assumptions:

• Safety-Related

- Safety-Related design standards, factors of safety, performance requirements, etc.
- Non-Safety-Related with Special Treatment
  - Commercial standards with special treatment necessary to achieve the performance target
- Non-Safety-Related
  - Commercial standards, factors of safety, performance requirements, QA, etc.
- Each of these choices establishes the seismic fragility and resulting performance



SHR System Fails

Frequency-Consequence – Initial Design

**Key Results from Risk Quantification Using Initial Design Assumptions** 

- Several LBEs exceed F-C Target (unfavorable)
- One Design Basis Accident (DBA) based on the DBEs does not meet the 25rem regulatory dose limit in 10 CFR 50.34
  - → Design revision is necessary





RV&S

Reactor Vessel

and Supports

SCRAM

SCRAM Insertion

Itelease?

BHS

Backup Heat

Suppression

System for Heat

# Frequency-Consequence – Initial Design

### **Cumulative Risk Requirement**

- Cumulative mean frequency of LBEs exceeding 100 mrem at the Exclusion Area Boundary (EAB)
- Meets regulatory requirement
  - $\Sigma = 1.2E-4/yr << 1/yr (\sim 0.01\%)$
  - Seismic only
- Quantitative health objective (QHO) req'ts not evaluated for simplicity
  - Requires dispersion analyses



RV85

Reactor Vessel

and Supports

SCRAM

SCRAM Insertion

System for Heat

Itelease?

Backup Heat

Suppression

Frequency-Consequence – Revise Design

### **Potential Design Revision Options**

- Reconsider seismic design criteria selected for SSCs
- Impose special treatments on SSC designs
- Reclassify SSCs
- Limit dose consequences by introducing barriers
- Refine performance targets
  - Capability / limit state
- Acombination of the above



RV&S

Reactor Vessel

and Supports

SCRAM Insertion

Itelease?

Backup Heat

Suppression

Frequency-Consequence – Revised Design

### **Selected Design Revisions**

- Special treatment:
  - Limit the demand-tocapacity ratio for RB, RV&S, and SCRAM
- Best cost-benefit of several options considered

#### Key Takeaway

• LMP allows optimizing design for cost-benefit purposes as it progresses



RV&S

Reactor Vessel

and Supports

SCRAM

SCRAM Insertion

Itelease?

BHS

Backup Heat

Suppression

System for Heat

Insights

# LMP and RIPB Design for External Hazards – Insights



### **Challenges**

- An initial PRA is needed at early RIPB design stages, which can be challenging since there is limited site-specific data and the early PRA insights may have high uncertainty
- Implementing RIPB/LMP framework requires close collaboration between multiple technical disciplines in design and PRA teams

#### Benefits

- RIPB external hazards design can be used to risk-inform design requirements and holds potential to make plant designs more cost-effective, while maintaining high levels of safety
- RIPB design considerations can inform C&S selection

#### Follow-up research

- Criteria for risk-informed codes & standards for structural design
- Treatment of very rare seismic events in RIPB design

Code & Standard Provisions for RIPB Structural Design



# C&S for RIPB Structural Design



### Overall approach for follow-up EPRI research

- LMP enables performance-based design of structures
- Structural performance defined by reliability and capability targets
- Commercial C&Ss can be (are regularly) used for performance-based design of structures
- Demonstrate by simple example use of commercial C&Ss to achieve target performance
- Address additional considerations, anticipate & address objections
- Outline ideas for further development, provided NRC agrees with concept

# Background & Motivation



- SR building structures are major cost contributors
  - RIPB structural design: an opportunity to optimize costs while maintaining robust plant safety
- NRC staff acknowledged that some endorsed nuclear C&S may not provide safety benefits commensurate with the additional costs (see <u>2024 Action Plan</u>)
- Limited time to develop design guidance and regulatory certainty
  - Incorporating the RIPB approach into revisions of consensus codes and standards (C&Ss) and getting the NRC endorsement will take time
  - A parallel path to address nearer-term needs:
- → Use provisions from currently available commercial C&Ss to design structures

# **Key Elements**



- Capability targets for structures are represented by limit states, beyond which they lose their ability
  to prevent/mitigate event sequences and the associated consequences.
- Reliability targets are the maximum allowable occurrence probabilities for those limit states, (expressed in terms of unconditional annual exceedance probabilities).



- A high-level implementation example will be used to demonstrate:
  - Specified reliability and capability targets can be achieved by commercial C&S provisions
  - Performance-based design using commercial C&S provisions can be implemented by performance targets that are informed by risk analysis

# Example - reliability & Capability Target



**ASCE 43 vs ASCE 7** 



## Further Considerations & Anticipated Objections



### Seems too easy. What else? The devil is in the details...

- C&S provisions not directly linked to reliability or capability
  - QArequirements (inspections, paperwork, etc.)
  - Materials requirements, e.g., higher strength, testing, prevention of aging mechanisms
- Gaps between nuclear and commercial C&S
  - Load combinations
  - Analysis procedures, e.g.:
    - Development of ISRS when designing for inelastic limit states
    - SSI analysis
- Guidance needed to drive consistency in implementation
  - Interpretation of margin levels available in various commercial C&Ss
  - Similar to the situation in the early days of seismic fragility analysis / SPRA

### NRC Considering Endorsing Commercial C&S



### **Recommend focusing them in the right places...**

| Safety Class                                             | Commerci                                                                                                                                                | al C&Ss                                                                                                                     |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Safety Related (SR)                                      | <ul> <li>Would be great to endorse commercial C&amp;Ss for SR structures.</li> <li>May require exceptions, clarifications, guidance, etc.</li> </ul>    |                                                                                                                             |
| Non-Safety<br>Related<br>Special<br>Treatment<br>(NSRST) | <ul> <li>NSR</li> <li>Endorsement should not be needed:<br/>non-Safety-Related</li> <li>Already endorsed in RG 1.233?</li> </ul>                        | <ul> <li>ST</li> <li>Likely very application-specific</li> <li>Consider develop a more general method / guidance</li> </ul> |
| Non-Safety-Related with No Special Treatment (NST)       | <ul> <li>Endorsement neither needed nor desired.</li> <li>Plenty of precedent designing non-SR structures using commercial C&amp;S for LWRs.</li> </ul> |                                                                                                                             |

# Some Closing Thoughts



#### Hot topic. Much research, guidance, and regulatory alignment needed.

- EPRI 3002029295 (Sept. 2024) demonstrated RIPB design for external hazards
- Ongoing follow-up research on C&S selection, treatment of very rare seismic events
- Attention from NRC (X-energy readiness review; Natrium PSAR draft Safety Eval.)
- Guidance needed:
  - Implementation w/ limited info at Construction Permit stage w/o excessive conservatism
  - "Mapping" commercial C&S provisions to LMP-type performance targets
  - ..
- NSRSTsafety classification offers cost-benefit if "commercial+" C&S can be used
  - Industry & regulator still developing alignment on RIPB philosophy?
  - Would regulator be ok with a relatively "low" seismic fragility for NSRSTSSC if risk insights indicate it has adequate performance?
  - Draft Part 53 suggested NSRST requirements very similar to SR

# Research Team



#### Simpson Gumpertz & Heger Inc.

Fred F. Grant (<u>ffgrant@sgh.com</u>)

Siavash Dorvash (sdorvash@sgh.com)

Mohamed M. Talaat (<u>mtalaat@sgh.com</u>)

Riccardo Cappa (<u>rcappa@sgh.com</u>)

Kai Kirk (<u>kakirk@sgh.com</u>)

#### **Electric Power Research Institute (EPRI)**

John Richards (<u>irichards@epri.com</u>)

Hasan Charkas (hcharkas@epri.com)

Questions?