

Commodification of advanced and micro reactors: an invested civil engineer's perspective

Andrew Whittaker, F.ASCE, M.ANS SUNY Distinguished Professor, University at Buffalo Chair, ASCE Nuclear Standards Committee For our conversation today

- The 10 TWe moonshot
- Commodifying nuclear energy
- Right-sizing external hazards and risk
- Earthquake load case and seismic isolation
- REPOWER

NASA

For our conversation today

- The 10 TWe moonshot
- Commodifying nuclear energy
- Right-sizing external hazards and risk
- Earthquake load case and seismic isolation
- REPOWER

NASA

Nuclear: great idea but far too expensive?

- Major impediments to deployment of new LLWRs in the US
 - High OCC and LCOE, long time to deploy and to ROI
 - No learning from doing = NoaK

Nuclear: great idea but far too expensive?

- Preconstruction (8+ years)
 - FEED studies
 - Geotechnical studies
 - PSHA
 - SSI analysis
 - Scheme design
 - DD + CD
 - Internal and external events PRA
 - Licensing
- Construction (12+ years)
- 20+ years to ROI = no customers
- Seismic load case ---> FoaK
- Civil/structural engineering: 50+% of OCC
- FoaK = no nuclear supply chain
- ROI = 5 years @ \$2,500/kWe

Commodifying nuclear energy: changing the paradigm

	Standardized	Mass-customized	Customized	
	Standardized complex product systems e.g. CCGT power plants	Platform-based complex product systems e.g. Small modular reactor (SMR) nuclear power plants, carbon capture & storage	Complex product systems (CoPS) e.g. Nuclear power plants, BECCS	Complex
Degree of design complexity	Mass-produced complex products e.g. Electric vehicles	Platform-based complex products e.g. Wind turbines, concentrating solar power	Complex-customized products e.g. Biomass power plants, geothermal power	Design- intensive
	Mass-produced products e.g. Solar PV modules, LEDs	Mass-customized products e.g. Rooftop solar PV	Small-batch products e.g., Building envelope retrofits	Simple Malhotra and Schmidt
		Need for customization	-	(Joule, 2020)
	Туре 1	Туре 2	Туре 3	

Advanced and micro reactors

/

TerraPower and GEH

Lucid Catalyst

For our conversation today

- The 10 TWe moonshot
- Commodifying nuclear energy
- Right-sizing external hazards and risk
- Earthquake load case and seismic isolation
- REPOWER

NASA

- Cost and safety impacts
- Load effects
 - Wind-borne missile impact
 - Aircraft impact
 - Extreme ground shaking
- Acceptable risk

- Load effects: wind-borne missiles •
 - Regulatory Guides •
 - Tornadoes (RG 1.76), hurricanes (RG 1.221)
 - **Normal** impact of high-velocity missiles •
 - Schedule 40 steel pipe, 150 mm dia, 5 m long, 130 kg
 - 41 m/s (tornado), 94 m/s (hurricane)
 - Simple but why normal impact?
 - Automobile, 1820 kg, specific size
 - 41 m/s (tornado), 113 m/s (hurricane)
 - Any evidence of such damage?
 - Non-nuclear sectors: no

- Load effects: aircraft impact
 - Aircraft cockpits secured for 20 years
 - Hijacking of aircraft in US since 2001 = 0
 - Strike a RC box and not a political target? No.
 - Could you hit the RC box if you wanted to? No.
 - MAF of aircraft impact on a RC box in the US = 0
 - Guaranteed fatalities from an aircraft strike?
 - 250+ dead on B787, all on the plane

Boeing

- Load effects: incredible ground shaking
 - Consider Seismic Design Category 4, Clinch River
 - 100% DRS (PHA=0.53g, RP=5,300 years), 200% DRS (1.06g, 25,000), 400% DRS (2.12g, 150,000), 600% DRS (3.18g, 490,000), 800% DRS (4.24g, 1,250,000)

- Tolerable risk
 - MAF of death in a car accident?
 - 1/10000 (1E-4)
 - MAF of building collapse?
 - 1/5000 (2E-4) from ground shaking
 - MAF of death due to dam failure
 - 1/10000 (1E-4), existing dam
 - 1/100000 (1E-5), new, major dam
- Need to right size the F-C chart

For our conversation today

- The 10 TWe moonshot
- Commodifying nuclear energy
- Right-sizing external hazards and risk
- Earthquake load case and seismic isolation
- REPOWER

NASA

Earthquake load case. Always FoaK?

- Seismic hazard varies by
 - Proximity to faults (line, areal, point)
 - Soil conditions
 - How characterized now: SSHAC
- Soil-structure-interaction analysis
 - Nuclear cottage industry
 - Coupled dynamics of soil and structure
 - Surface mounted structures
 - Deeply embedded structures
 - Need to define ground motion at depth
 - Where, how? Body waves, surface waves?
- Cost impact of the seismic load case?

Seismic isolation. Asset protection only?

- Isolated LLWRs: Cruas and Koeberg
 - Synthetic rubber bearings

Seismic isolation, LLWRs, advanced and micro reactors

- USNRC (2008-2017): Seismic isolation of large light water reactors
- DOE (2014-2016): Seismic isolation of components in advanced nuclear reactors
- DOE (2016-2018): Evaluation of the potential effect of seismic risk at DOE facilities
- DOE (2017-2019): Seismic isolation of advanced reactors with considerations of fluid structure interaction
- DOE (2018-2020): Seismic isolation of major advanced reactor systems for economic improvement and safety assurance
- EPRI (2018-2019): Cost basis for utilizing seismic isolation for nuclear power plant design
- ARPA-E (2018-2021): Reducing the overnight capital cost of advanced reactors using equipment-based seismic protective systems
- DOE via Southern Company (2021-2023): Topical report on seismic isolation of advanced reactors
- DOE ARDP via MIT (2021-2024): Horizontally configured high-temperature gas reactor
- DOE NEUP (2022-2025): Gamma irradiation effects on the mechanical properties of seismic protective devices

Technology readiness: seismic isolation

Why standardize? The role of isolation?

- Advanced Liquid Metal Reactor, 1992, Berkeley
- Standardize for needed cost reductions
 - Seismic isolation
 - Productized buildings, DfMA
 - COTS equipment
 - Separate nuclear island from the balance of plant
 - Web-based ground motion calculations (USGS)
 - One time licensing: building, equipment, isolation systems
 - Enable a nuclear supply chain: order books for parts
- Quantify the cost savings? Data for advanced reactors?

е

Quantify costs savings: isolation and standardization (NoaK)

Ч

Seismic isolation and ARPA-E

Risk-based design of isolation systems: 2023 topical report

• Risk-based design of a seismic isolation system

(identical to Figure A.1a and Figure A.2a)

- Seismic displacement demand curves
- Isolation-system fragility function
 - Increment F50 until target performance goal (TPG) adhieved Figure 5.7. Seismic hazard data, geomean horizontal, 5% critical damping, Clinch River, CD soil
 - Prototype testing

(a) 0, 0.1-, and 2-second seismic hazard curves

(b) isolation-system fragility functions

Southern Company Granted to

How isolation systems, Clinch River, CD soil Figure 5.3. Seismic hazard data, geomean horizontal, 5% critical damping, Clinch River, BC soil

Site selected. 2) Pick a licensed heat source (MWe). 3) Pick a licensed isolation solution.
Price time and construction. 5) Evaluate alternatives and iterate on 2, 3, and 4.

Acknowledgments

University at Buffalo: SSP, KML, CCY, FUHM, MK^2, MCC MIT NSE: Koroush Shirvan, Jacopo Buongiorno, and others TerraPraxis: Eric Ingersoll, Kirsty Gogan, and others Bryden Wood US Department of Energy US Advanced Research Projects Agency—Energy US Nuclear Regulatory Commission Lawrence Berkeley National Laboratory: Robert Budnitz Idaho National Laboratory: Chandrakanth Bolisetti, Justin Coleman Electric Power Research Institute: John Richards, Hasan Chakas Southern Company: Ben Carmichael, Brandon Chisholm, Jason Redd Kairos Power, X-energy, TerraPower, Boston Atomics, BWXT-RR

awhittak@buffalo.edu