Contents

•	The	Transport Equation	1
	1-1	Introduction	1
	1-2	Particle Interactions Assumptions, 3 Cross Section Definitions, 4 Neutron Cross Sections, 7 Gamma Ray Cross Sections, 8 Scattered Particle Distributions, 10 Fission Neutron Distribution, 14	2
	1-3	Particle Streaming Particle Distributions, 16 The Streaming-Collision Operator, 20 Boundary Conditions, 25 Inversion of the Streaming-Collision Operator, 27 Streaming in Curvilinear Coordinates, 28	16
	1-4	Transport with Secondary Particles Nonmultiplying Systems, 34 Multiplying Systems without Delayed Neutrons, 38 The Neutron Kinetics Equations, 39	34
	1-5	The Time-Independent Transport Equation Fixed Source and Eigenvalue Problems, 43 The α Eigenvalue, 45 The k Eigenvalue, 46	42
	1-6	The Adjoint Transport Equation Nonmultiplying Systems, 47 Multiplying Systems, 52	47

xii	Contents
LII	

All			
	An A	rences bbreviated List of Related Texts lems	55 56 57
2.	Energy and Time Discretization		
	2-1	Introduction	61
	2-2	The Multigroup Equations Energy Separability, 63 Multigroup Cross Section Evaluation, 68 Alternative Derivation, 73	61
	2-3	Fixed Source Problems Nonmultiplying Systems, 78 Solution of Within-Group Equations, 80 Acceleration of Within-Group Calculations, 83	78
	2-4	Criticality Calculations Power Iteration Solution, 92 Acceleration by Extrapolation Methods, 95 Acceleration by the Rebalance Method, 95 Synthetic Acceleration Methods, 97	90
	2-5	Time-Dependent Problems Forms of the Kinetics Equations, 104 Differencing of the Prompt Neutron Approximation, 106 Delayed Neutron Kinetics, 108	103
	Refe	rences	111
	Prob	elems .	112
3.	Disc	crete Ordinates Methods In One Spatial Dimension	11
	3-1	Introduction	11
	3-2	Angular Approximations The Discrete Ordinates Formulation, 118 Legendre Polynomial Approximations, 120 Comparison of Angular Approximations, 123	11
	3-3	Spatial Differencing and Solution Diamond Difference Equations, 128 Spatial Truncation Error, 131 Alternative Difference Schemes, 133	12

Contents			xiii	
	3-4	Curvilinear Coordinates Angular Discretization, 137 Spatial Differencing, 140	135	
	3-5	Coarse Mesh Rebalance, 145 Synthetic Method, 147	145	
	Refe	Comparison of Methods, 149	151	
	References Problems			
4.	Mul	tidimensional Discrete Ordinates Methods	156	
	4-1	Introduction	156	
	4-2	Discrete Ordinates Quadrature Sets Level Symmetric Quadrature, 158 Quadrature with Reduced Symmetry, 162	156	
	4-3	Difference Equations: Cartesian Coordinates $x-y$ Geometry, 166 $x-y-z$ Geometry, 172	166	
	4-4	Difference Equations: Curvilinear Coordinates Angular Discretization, 177 Spatial Differencing, 180 Acceleration Consideration, 185 Infinite Cylindrical Geometry, 186	175	
	4-5	Triangular Mesh Difference Equations Space – Angle Differencing, 188 Solution Algorithms, 192	188	
	4-6	Ray Effects The Ray Effect Phenomenon, 195 Ray Effect Remedies, 198 Errors from Ray Effects, 200	194	
	References Problems		203 205	
5.	Integral Transport Methods			
	5-1	Introduction	208	
	5-2	Derivation of the Integral Equations	209	

The Angular Flux Equation, 209
The Scalar Flux Equation, 211

xiv		Content

	5-3	Slab Geometry The Scalar Flux Equation, 213 The Collision Probability Method, 215 Slab Lattice Problems, 218	213
	5-4	Integral Transport in Two Dimensions The Two-Dimensional Equations, 220 Two-Dimensional Collision Probability Formulation, 225	220
	5-5	Application of Integral Transport Methods Unit Cell Calculations, 230 Response Matrix Formulation, 235	228
	5-6	Evaluation of Collision Probabilities Ray Tracing Methods, 241 Optical Reciprocity Relationships, 248	241
	Refe	rences	252
	Prot	plems	254
6.	Eve	n-Parity Transport Methods	257
	6-1	Introduction	257
	6-2	The Even-Parity Transport Formulation Derivation, 258 Variational Formulation, 261 The Ritz Procedure, 264	258
	6-3	Spatial Finite Elements The Diffusion Approximation, 266 Spatial Discretization in One Dimension, 268 Spatial Discretization in Two Dimensions, 272	266
	6-4	Slab Geometry Transport Methods The Variational Problem, 278 Spatial Discretization, 279 Treatment of the Angular Variable, 281	278
	6-5	Two-Dimensional Transport Angular Approximation, 286 Spatial Discretization, 289	285
	Refe	erences	291
	Prol	blems	293

Contents	XV

7.	The	The Monte Carlo Method 296		
	7-1	Introduction	296	
	7-2	Probability Distribution Functions Functions of a Single Random Variable, 299 Distribution Sampling, 302 Functions of Two Random Variables, 305	299	
	7-3	Analog Monte Carlo Sampling Tracking Procedure, 309 Tallies, 310	309	
	7-4	Error Estimates Expectation Values, 314 Variance, 315 The Central Limit Theorem, 319	313	
	7-5	An Example Calculation Monte Carlo Calculations, 322 Analytical Solution, 324	321	
	7-6	Nonanalog Monte Carlo Properties of Variance, 327 Importance Sampling, 329 Variance Reduction Methods, 331	327	
	7-7	Tracking in Phase Space Cross Sections and Collisions, 339 Tallies, 343 Geometrical Tracking, 346	339	
	7-8	Criticality Calculations Estimation of Multiplication, 351 Error Evaluations, 354	350	
		rences plems	356 358	
AP	PEND	DIXES	361	
A		e Useful Mathematical Functions erences, 369	361	
В	Truncation Error, Stability, and Convergence References, 376		370	