Contents

Preface

One: BASIC NEUTRON PHYSICS CONCEPTS 1

1-1 Introduction 1
1-2 Engineering Requirements of Reactor Physics 2
1-3 The Fission Process 5
1-4 Fluxes, Currents, and Sources 10
1-5 Microscopic Cross Sections and Other Nuclear Data 17
1-6 Reaction Rate Densities and Macroscopic Cross Sections 20
1-7 The Basic Theoretical Approach 23
1-8 Summarizing Remarks 25
Homework Problems 26
Review Questions 28
References 29

Two: NEUTRON BALANCE EQUATIONS AND THE FUNDAMENTAL NEUTRONICS PROBLEMS 30

2-1 Introduction 30
2-2 The Static Balance Equations of Neutron Transport and Diffusion 31
2-2A The Differential Form of the Transport Equation (Boltzmann Equation) 32
2-2B The Integral Transport Equation 36
2-2C The Diffusion Theory Equation 39
2-2D Few-Group Diffusion Equations 43
2-2E Boundary Conditions for Transport and Diffusion Equations 50
2-2F The One-Group Diffusion Equation for a One-Region Assembly 57
2-3 Operators in Reactor Applications 59
2-3A Definition of Operators 59
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3B Neutron Balance Equations in Operator Form</td>
<td>62</td>
</tr>
<tr>
<td>2-4 Fundamental Neutronics Problems</td>
<td>63</td>
</tr>
<tr>
<td>2-4A Introduction</td>
<td>63</td>
</tr>
<tr>
<td>2-4B Source-Sink Problems</td>
<td>65</td>
</tr>
<tr>
<td>2-4C Subcritical Reactors with an Independent Source</td>
<td>66</td>
</tr>
<tr>
<td>2-4D The Critical Reactor</td>
<td>67</td>
</tr>
<tr>
<td>2-4E The Static Off-Critical Reactor Problem and the Static Multiplication Constant</td>
<td>69</td>
</tr>
<tr>
<td>2-4F The Time-Dependent Flux and the Dynamic Reactivity</td>
<td>73</td>
</tr>
<tr>
<td>2-5 Estimates of Criticality for Thermal Reactors</td>
<td>74</td>
</tr>
<tr>
<td>2-6 Separation of Space and Energy Dependencies</td>
<td>78</td>
</tr>
<tr>
<td>2-6A Balance Equations Resulting from Flux Separation</td>
<td>78</td>
</tr>
<tr>
<td>2-6B General Types of Solutions for the Separated Balance Equations</td>
<td>81</td>
</tr>
<tr>
<td>2-6C Separation of Problems with Distributed Independent Sources</td>
<td>87</td>
</tr>
<tr>
<td>2-6D Separation of Problems with Localized Independent Sources</td>
<td>88</td>
</tr>
<tr>
<td>2-7 Flux Separability Applications for Two Groups</td>
<td>90</td>
</tr>
<tr>
<td>2-7A Separation of the Two-Group Diffusion Equation</td>
<td>91</td>
</tr>
<tr>
<td>2-7B Fundamental and Higher Material Bucklings and Spectra</td>
<td>93</td>
</tr>
<tr>
<td>2-7C The Space-Dependent Flux Components</td>
<td>95</td>
</tr>
<tr>
<td>2-8 Summarizing Remarks</td>
<td>96</td>
</tr>
<tr>
<td>Review Questions</td>
<td>99</td>
</tr>
<tr>
<td>References</td>
<td>103</td>
</tr>
</tbody>
</table>

Three: THE SPACE DEPENDENCE OF THE NEUTRON FLUX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1 Introduction</td>
<td>104</td>
</tr>
<tr>
<td>3-2 Basic Considerations</td>
<td>105</td>
</tr>
<tr>
<td>3-3 Flux Shapes in Homogeneous Single Regions</td>
<td>107</td>
</tr>
<tr>
<td>3-3A Infinite Slab Reactor</td>
<td>108</td>
</tr>
<tr>
<td>3-3B Spherical Bare Core</td>
<td>111</td>
</tr>
<tr>
<td>3-3C Infinite Cylindrical Core</td>
<td>113</td>
</tr>
<tr>
<td>3-3D Finite Cylindrical Core</td>
<td>115</td>
</tr>
<tr>
<td>3-3E Rectangular Parallelepiped Reactor</td>
<td>117</td>
</tr>
<tr>
<td>3-3F Summary of One-Region-Reactor Flux Shapes</td>
<td>119</td>
</tr>
</tbody>
</table>
3-3G Power Peaking Factors and Optimum One-Region Geometries 119

3-4 One-Group Flux Solutions in Source-Sink Problems and in Subcritical Reactors 124
 3-4A Point Neutron Source in an Infinite Region 125
 3-4B Plane Neutron Source in an Infinite Medium 127
 3-4C Physical Interpretations of Diffusion Length 128
 3-4D Flux Distributions in Subcritical Systems 129
 3-4E The Exponential Pile 136

3-5 Multiregion Flux Shape Problems 139
 3-5A General Features of Reflected Cores 140
 3-5B Reflected Infinite Slab Core 142
 3-5C Reflector Savings 146

3-6 Analytical Two-Group Flux Solutions in Subcritical Systems 151
 3-6A Two-Group Fluxes in a Superproductive Medium 151
 3-6B Two-Group Flux Distributions in a Subproductive Medium 155

3-7 Summarizing Remarks 156
 Homework Problems 157
 Review Questions 159
 References 161

Four: NEUTRON ENERGY DEPENDENCY DURING SLOWING DOWN 162

4-1 Introduction 162

4-2 Scattering Processes 164
 4-2A Elastic Scattering at Epithermal and High-Neutron Energies 164
 4-2B The Lethargy 174
 4-2C Elastic Scattering Cross Sections 179
 4-2D Inelastic Scattering 182

4-3 Numerical Calculation of Slowing Down Spectra 186
 4-3A Preliminary Form of the Multigroup Equations 186
 4-3B Solution of the Source-Sink Problem 188
 4-3C Solution of the Eigenvalue Problems 189

4-4 Fast Fission 191

4-5 Slowing Down in Hydrogen 194
 4-5A The Balance Equations 194
 4-5B Slowing Down in Hydrogen with a Constant σ, 196
4-5C Slowing Down with an Energy-Dependent Hydrogen Scattering Cross Section 199
4-5D Slowing Down with Energy-Dependent Scattering and Absorption 200
4-5E Slowing Down with $\sigma_s(E)$, Absorption, and Leakage 204
4-6 Slowing Down in Nonhydrogenous Materials Without Absorption 206
4-7 The Thermal Neutron Spectrum 212
 4-7A General Considerations 212
 4-7B Separation of “Fast” and “Thermal” Neutrons 213
 4-7C Balance Equation for Thermal Neutrons in an Infinite Absorbing System 214
 4-7D Thermal Neutron Balance in a Source-Free Nonabsorbing Infinite System 216
 4-7E The Shape of the Thermal Neutron Spectrum 217
 4-7F The Magnitude of the Thermal Spectrum 221
 4-7G Average Thermal Absorption Cross Section $\Sigma_{a,th}$ and the η Coefficient 222
4-8 Summarizing Remarks 223
 Homework Problems 225
 Review Questions 226
 References 229

Five: NEUTRON SLOWING DOWN THEORY WITH RESONANCE ABSORPTION 231

5-1 Introduction 231
5-2 Resonance Cross Sections 232
 5-2A Basic Considerations 232
 5-2B Resolved Resonance Region 236
 5-2C Unresolved Resonance Region 238
5-3 Resonance Absorption During Slowing Down in Hydrogen in an Infinite Medium 239
 5-3A Basic Slowing Down Spectrum Features 239
 5-3B Resonance Absorption and Escape Probabilities 243
5-4 Basic Approximations for the Treatment of Resonance Absorption 247
 5-4A Illustration of the Two Basic Approximations 248
 5-4B Loss-Free Spectrum in the NR Approximation 250
 5-4C Loss-Free Spectrum in the NRIM Approximation 253
 5-4D Applicability of the NR and NRIM Approximations 256
5-4E Resonance Integrals in Homogeneous Media 257
5-5 Improved Treatment of Resonance Absorption 261
 5-5A Slowing Down with Weak-Absorption Fermi Age Theory in an Infinite Medium 261
 5-5B The Selengut-Goertzel and the Greuling-Goertzel Approximations 262
 5-5C Individual Resonance Treatments 264
 5-5D Summary of Resonance Absorption in Homogeneous Media 265
5-6 Resonance Effects in Heterogeneous Systems 266
 5-6A General Comments 266
 5-6B Absorption Rates in Heterogeneous Media 268
 5-6C Approximate Escape Probabilities and Equivalence Relations 271
5-7 Temperature-Dependent Resonance Absorption 274
 5-7A General Discussion 274
 5-7B Temperature-Dependent Resonance Shape 275
 5-7C Temperature-Dependent Reaction Rates 278
5-8 Summarizing Remarks
 Homework Problems 282
 Review Questions 284
 References 286

Six: NEUTRON TRANSPORT 289

6-1 Introduction 289
6-2 Basic Considerations 290
 6-2A Fundamental Inaccuracies of Diffusion Theory 290
 6-2B Anisotropic Scattering 293
6-3 Survey Discussion of Transport Theoretical Methods 295
 6-3A The Basic Scheme of Methods 295
 6-3B Spherical Harmonics Approach 297
 6-3C Double P_n Theory 300
 6-3D The S_n Theory 302
 6-3E One-Group Integral Transport Theory 304
6-4 P_1 Theory, Diffusion Theory, and Transport Correction 304
 6-4A Derivation of the One-Group P_1 Equations 304
 6-4B Derivation of the One-Group Diffusion Equation 311
6-5 Summarizing Remarks 313