Nuclear Power Plant Response to an Earthquake An American National Standard ## American National Standard Nuclear Power Plant Response to an Earthquake Secretariat American Nuclear Society Prepared by the American Nuclear Society Standards Committee Working Group ANS-2.23 Published by the American Nuclear Society 555 North Kensington Avenue La Grange Park, Illinois 60526 USA Approved April 7, 2016 by the **American National Standards Institute, Inc.** #### American National Standard Designation of this document as an American National Standard attests that the principles of openness and due process have been followed in the approval procedure and that a consensus of those directly and materially affected by the standard has been achieved. This standard was developed under the procedures of the Standards Committee of the American Nuclear Society; these procedures are accredited by the American National Standards Institute, Inc., as meeting the criteria for American National Standards. The consensus committee that approved the standard was balanced to ensure that competent, concerned, and varied interests have had an opportunity to participate. An American National Standard is intended to aid industry, consumers, governmental agencies, and general interest groups. Its use is entirely voluntary. The existence of an American National Standard, in and of itself, does not preclude anyone from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. By publication of this standard, the American Nuclear Society does not insure anyone utilizing the standard against liability allegedly arising from or after its use. The content of this standard reflects acceptable practice at the time of its approval and publication. Changes, if any, occurring through developments in the state of the art, may be considered at the time that the standard is subjected to periodic review. It may be reaffirmed, revised, or withdrawn at any time in accordance with established procedures. Users of this standard are cautioned to determine the validity of copies in their possession and to establish that they are of the latest issue. The American Nuclear Society accepts no responsibility for interpretations of this standard made by any individual or by any ad hoc group of individuals. Inquiries about requirements, recommendations, and/or permissive statements (i.e., "shall," "should," and "may," respectively) should be sent to the Scientific Publications and Standards Department at Society Headquarters. Action will be taken to provide appropriate response in accordance with established procedures that ensure consensus. Comments on this standard are encouraged and should be sent to Society Headquarters. Published by the American Nuclear Society 555 North Kensington Avenue La Grange Park, Illinois 60526 USA #### This document is copyright protected. Copyright © 2016 by American Nuclear Society. All rights reserved. Any part of this standard may be quoted. Credit lines, should read "Extracted from American National Standard ANSI/ANS-2.23-2016 with permission of the publisher, the American Nuclear Society." Reproduction prohibited under copyright convention unless written permission is granted by the American Nuclear Society. Printed in the United States of America #### Inquiry Requests The American Nuclear Society (ANS) Standards Committee will provide responses to inquiries about requirements, recommendations, and/or permissive statements (i.e., "shall," "should," and "may," respectively) in American National Standards that are developed and approved by ANS. Responses to inquiries will be provided according to the Policy Manual for the ANS Standards Committee. Nonrelevant inquiries or those concerning unrelated subjects will be returned with appropriate explanation. ANS does not develop case interpretations of requirements in a standard that are applicable to a specific design, operation, facility, or other unique situation only and, therefore, is not intended for generic application. Responses to inquiries on standards are published in ANS's magazine, *Nuclear News*, and are available publicly on the ANS Web site or by contacting the ANS Scientific Publications and Standards Department. ### Inquiry Format Inquiry requests shall include the following: - (1) the name, company name if applicable, mailing address, and telephone number of the inquirer; - (2) reference to the applicable standard edition, section, paragraph, figure, and/or table; - (3) the purpose(s) of the inquiry; - (4) the inquiry stated in a clear, concise manner; - (5) a proposed reply, if the inquirer is in a position to offer one. Inquiries should be addressed to: American Nuclear Society ATTN: Scientific Publications and Standards Department 555 N. Kensington Avenue La Grange Park, IL 60526 or standards@ans.org #### **Foreword** (This foreword is not a part of American National Standard "Nuclear Power Plant Response to an Earthquake," ANSI/ANS- 2.23-2016.) This standard describes actions a utility should take preceding and immediately following an earthquake felt at a nuclear power plant site to determine the need to shut the plant down and, if shutdown is required, actions to determine the power plant's readiness to restart. The plant operator makes the decision to shut down the nuclear power plant based on U.S. Nuclear Regulatory Commission (NRC) regulations that require shutdown in the event that the plant's design operating basis earthquake (OBE) is exceeded or damage is found during post-earthquake inspections. In some cases shutdown requirements are part of the plant's licensing basis (e.g., condition of license, final safety analysis report commitment, or technical specifications). An industry/NRC consensus criterion that defines OBE exceedance is presented in Electric Power Research Institute (EPRI) report NP-6695, "Guidelines for Nuclear Plant Response to an Earthquake" (1990); ANSI/ANS-2.10-2003 (withdrawn), "Criteria for the Handling and Initial Evaluation of Records from Nuclear Power Plant Seismic Instrumentation"; and NRC Regulatory Guide 1.166, "Pre-Earthquake Planning and Immediate Nuclear Power Plant Operator Post-earthquake Actions," issued in 1997. It should be noted that Sec. 4, "Overview of Nuclear Power Plant Response Actions," in this standard does not specify any requirements or recommendations. Requirements referred to are those that are mandated by long-standing NRC regulations such as the requirement that nuclear power plants have installed seismic instrumentation and that they shut down any time a felt earthquake exceeds the plant's OBE. It is only a summary listing of the topics and actions covered in the standard. The sections that specify requirements and recommendations of the standard are Secs. 5 through 9. These sections have been carefully written to implement the use of the American Nuclear Society (ANS) policy to use "shall" and "should" for requirements and recommendations, respectively. Clarifications of this criterion and conditions applicable to its implementation are included in this update of ANSI/ANS-2.23-2002 (R2009). The standard addresses the required sequences of response to an earthquake. It defines pre-earthquake actions, immediate actions, post-shutdown actions, and long-term actions. The findings at each post-earthquake stage indicate the need for, and the level of, any additional effort. The standard specifies that plant personnel perform initial inspections, gather seismic recordings, and reach decisions on the need for plant shutdown and plant readiness for shutdown. If the plant is shut down, the standard defines procedures for near-term actions by plant operators to determine the earthquake effects, with engineers performing focused inspections and tests to determine if structures have sustained significant damage or if operating systems are in any way impaired. The standard then defines actions necessary to establish the readiness of the plant to restart. Finally, the standard provides for long-term, confirmatory evaluations that, in most cases, can be performed after plant restart. Specifically, the standard specifies actions in five main areas: - (1) pre-earthquake preparatory actions; - (2) post-earthquake short-term actions; - (3) determination of the earthquake damage level, earthquake level, and recommended action level; - (4) post-shutdown inspections and tests; - (5) long-term evaluations. In the years following the issuance of ANSI/ANS-2.23-2002 (R2009), a significant amount of experience has been gained on the effects of earthquakes on nuclear power plants worldwide, in particular, during events affecting plants in high-seismic-hazard areas such as Japan. International Atomic Energy Agency (IAEA) Safety Reports Series No. 66, "Earthquake Preparedness and Response for Nuclear Power Plants" (2011), documented lessons learned from all significant earthquake ground motions affecting nuclear power plants pre-2010. Of interest are three multiunit nuclear power plants in Japan that experienced beyond-design-basis earthquakes over the past several years and one domestic plant (Dominion Energy's North Anna plant in Virginia) that recorded an earthquake with measured ground motion accelerations that exceeded its design safe shutdown earthquake level. None of these plants had comprehensive earthquake response procedures; none had implemented pre-earthquake preparations for a beyond-design-basis earthquake; and none had visible damage to safety-related structures, systems, or components. Nevertheless, many months (in some cases more than a year) and thousands of man-hours of plant inspections and evaluations were spent justifying restart of the plants. A comprehensive earthquake response plan such as the one described herein could have significantly focused and reduced these efforts. Based on these events and the lessons learned in establishing the effects of the earthquakes on the plants and the actions ultimately undertaken to establish the readiness of the plants to restart, a significant update of EPRI report NP-6695 [the technical basis for ANSI/ANS-2.23-2002 (R2009)] was prepared and published in 2013 as EPRI report 3002000720, "Guidelines for Nuclear Plant Response to an Earthquake." This revised ANSI/ANS-2.23 standard incorporates the significant changes and additions included in EPRI report 3002000720, which serves as the commentary for this standard. It is also consistent with IAEA Safety Reports Series No. 66. Applicability of the aforementioned documents is specifically limited to nuclear power reactor—type plants. This standard might reference documents and other standards that have been superseded or withdrawn at the time the standard is applied. A statement has been included in the references section that provides guidance on the use of references. This standard does not incorporate the concepts of generating risk-informed insights, performance-based requirements, or a graded approach to quality assurance. The user is advised that one or more of these techniques could enhance the application of this standard. This standard was prepared by the ANS-2.23 Working Group. The following members contributed to this standard: - R. Kassawara (Chair), Electric Power Research Institute - D. Bhargava, Dominion Energy - G. Hardy, Simpson, Gumpertz and Heger - E. Hendrixson, *Dominion Energy* - J. Johnson, James J. Johnson and Associates - R. Kenneally, *Individual* - R. Kennedy, RPK Structural Mechanics Consulting - W. Schmidt, W. Schmidt Consulting The Seismic Subcommittee of the Environmental and Siting Consensus Committee had the following membership at the time of its approval of this standard: - Q. Hossain (Chair), Lawrence Livermore National Laboratory - J. Xu (Vice Chair), U.S. Nuclear Regulatory Commission - R. Carpenter, U.S. Nuclear Regulatory Commission - K. Hanson, AMEC Geomatrix - R. Kassawara, Electric Power Research Institute - F. Ostadan, Bechtel Corporation - J. Savy, Individual - I. Wong, URS Corporation The Environmental and Siting Consensus Committee had the following membership at the time of its approval of this standard: - C. A. Mazzola (Chair), CB&I Federal Services - Y. Gao (Vice Chair), Westinghouse Electric Company - T. Bellinger, Y-12 National Security Complex - K. Bryson, *Individual* - J. Call, Oasys, Inc. - B. Harvey (Observer), U.S. Nuclear Regulatory Commission - Q. Hossain, Lawrence Livermore National Laboratory - R. J. Hunt, Y-12 National Security Complex - J. O'Brien, U.S. Department of Energy - L. Parks, U.S. Nuclear Regulatory Commission - T. C. Rasmussen, University of Georgia - J. Savy, Individual - S. A. Vigeant, CB&I Federal Services - J. Xu, U.S. Nuclear Regulatory Commission #### **Contents** | Section Pa | | | | | | | | |------------|---|--|--|----|--|--|--| | 1 | Scope | | | | | | | | 2 | Purp | Purpose | | | | | | | 3 | Acronyms and definitions | | | | | | | | | 3.1 | • | nyms | | | | | | | 3.2 | | should, and may | | | | | | | 3.3 | | itions | | | | | | 4 | Over | erview of nuclear power plant response actions | | | | | | | 5 | Pre-earthquake preparations and planning | | | | | | | | | 5.1 | Respo | onsibilities | 7 | | | | | | 5.2 | Defini | ition of plant shutdown criteria | 7 | | | | | | 5.3 | | | | | | | | | 5.4 | Pre-ea | arthquake planning | 8 | | | | | | | 5.4.1 | | | | | | | | | | Baseline inspections | | | | | | | 5.5 | • | | | | | | | | 5.6 | Seismic design-basis records | | | | | | | 6 | Shor | t-term a | actions | 9 | | | | | | 6.1 Immediate operator actions | | | | | | | | | 6.2 | Operator walkdown inspections | | | | | | | | 6.3 | | valuation of ground motion records | | | | | | | 0.0 | 6.3.1 | | | | | | | | | 6.3.2 | Procedure to determine if the SSE has been exceeded | | | | | | | 64 | 6.4 OBE and SSE exceedance criteria | | | | | | | | 0.1 | 6.4.1 | OBE exceedance criterion | | | | | | | | 6.4.2 | SSE exceedance criterion | | | | | | | | 6.4.3 | Special considerations – definitions of design OBE and SSE respons | se | | | | | | | | spectra | | | | | | | 6.5 | | mination of need for plant shutdown | | | | | | | 6.6 | Pre-sh | nutdown inspections | | | | | | | | 6.6.1 | Safe shutdown equipment | 16 | | | | | | | 6.6.2 | Off-site power sources | 17 | | | | | | | 6.6.3 | On-site emergency power sources | 17 | | | | | 7 | Earthquake response action levels | | | | | | | | | 7.1 | e | | | | | | | | 7.2 | Earthquake levels | | | | | | | | 7.3 Recommended post-earthquake action levels | | | 21 | | | | | | | 7.3.1. | Actions for earthquakes with high-frequency exceedances | 24 | | | | | | | 7.3.2 | Actions for earthquakes with low-frequency exceedances | 24 | | | | | 8 | Post-shutdown inspections and tests2 | | | | | | |------|--------------------------------------|---|--|------------|--|--| | | 8.1 | Focuse | ed inspections and tests | 25 | | | | | 8.2 | Expan | ded inspections and tests | 27 | | | | | | | aspections and tests | | | | | | 8.4 | Guidel | lines for visual inspections and operability tests | 28 | | | | | | | llance tests | | | | | | 8.6 | HF-sei | nsitive devices | 29 | | | | | 8.7 | 7 Inspection personnel | | 29 | | | | | 8.8 | | | | | | | 9 | Long | Long-term evaluations | | | | | | | 9.1 | Comparative analyses of observed versus design earthquakes | | | | | | | | 9.1.1 | Calculation of seismic loads | 30 | | | | | | 9.1.2 | Comparison of actual and design seismic loads | 30 | | | | | | 9.1.3 | Seismic reevaluations | 30 | | | | | | 9.1.4 | Acceptance standards | 30 | | | | | 9.2 | 2 Reevaluation of special RCS piping and internals analyses | | 33 | | | | | 9.3 | Reeval | luation of site seismic hazard | 33 | | | | | 9.4 | Update of SMAs/SPSAs | | 33 | | | | | 9.5. | Development of seismic evaluation and verification plan | | | | | | 10 | Refe | erences | | | | | | Ap | pendi | | | | | | | | | | The Cumulative Absolute Velocity Damage Parameter | 36 | | | | | Appe | endix B | Characteristics of Seismic Monitoring Instrumentation and Data | 20 | | | | | Appendix C | | Acquisition Systems | | | | | | Appendix C
Appendix D | | Outline of Plant-Specific Plant Response Procedure | | | | | | пррс | AIGIA D | Outline of Flank-Specific Flank Response Flocedure | ······ ¬ / | | | | Fig | gures
Figure 1 | | Flow diagram of short-term actions | 18 | | | | Figu | | | Flow diagram of long-term evaluations and acceptance criteria | | | | | Tal | ble | | | | | | | | Table | a 1 | Action level matrix | 25 | | |