American Nuclear Society

decay heat power in light water reactors

an American National Standard

published by the
American Nuclear Society
555 North Kensington Avenue
La Grange Park, Illinois 60526 USA
Designation of this document as an American National Standard attests that
the principles of openness and due process have been followed in the approval
procedure and that a consensus of those directly and materially affected by
the standard has been achieved.

This standard was developed under procedures of the Standards Committee of
the American Nuclear Society; these procedures are accredited by the Amer-
ican National Standards Institute, Inc., as meeting the criteria for American
National Standards. The consensus committee that approved the standard
was balanced to ensure that competent, concerned, and varied interests have
had an opportunity to participate.

An American National Standard is intended to aid industry, consumers, gov-
ernmental agencies, and general interest groups. Its use is entirely voluntary.
The existence of an American National Standard, in and of itself, does not
preclude anyone from manufacturing, marketing, purchasing, or using prod-
ucts, processes, or procedures not conforming to the standard.

By publication of this standard, the American Nuclear Society does not insure
anyone utilizing the standard against liability allegedly arising from or after
its use. The content of this standard reflects acceptable practice at the time of
its approval and publication. Changes, if any, occurring through developments
in the state of the art, may be considered at the time that the standard is
subjected to periodic review. It may be reaffirmed, revised, or withdrawn at
any time in accordance with established procedures. Users of this standard
are cautioned to determine the validity of copies in their possession and to
establish that they are of the latest issue.

The American Nuclear Society accepts no responsibility for interpretations of
this standard made by any individual or by any ad hoc group of individuals.
Requests for interpretation should be sent to the Standards Department at
Society Headquarters. Action will be taken to provide appropriate response in
accordance with established procedures that ensure consensus on the
interpretation.

Comments on this standard are encouraged and should be sent to Society
Headquarters.

Published by

American Nuclear Society
555 North Kensington Avenue
La Grange Park, Illinois 60526 USA

Copyright © 2005 by American Nuclear Society.

Any part of this standard may be quoted. Credit lines should read “Extracted from
American National Standard ANSI/ANS-5.1-2005 with permission of the publisher,
the American Nuclear Society.” Reproduction prohibited under copyright convention
unless written permission is granted by the American Nuclear Society.

Printed in the United States of America
Foreword

The American Nuclear Society Nuclear Power Plant Standards Committee approved the American National Standard “Decay Heat Power in Light Water Reactors” in August 1994, which was released in 1995 [1], superseding the 1979 version. The standard was developed to fulfill a need for evaluations of fission reactor performance dependent upon knowledge of decay heat power in the fuel elements. The standard replaced a 1971 draft standard [2] (see Appendix A).

The 1994 revision to the standard incorporated additional measurements of decay heat that were published [3–6] and updated evaluations of decay heat using summation calculations based on improved nuclear databases [7,8]. In 1991, comparisons of elements of the standard with results of the new measurements and the new summation calculations were published [9]. In that report, proposed improvements to the standard were outlined. In response to that report, the tabular data in the tables entitled “Data for Standard Decay Heat Power” and associated uncertainties were reevaluated for the three fuel isotopes ^{235}U, ^{238}U, and ^{239}Pu and evaluated for the fuel isotope ^{241}Pu and were then added to the 1994 revision.

In the interim between the release of the 1994 standard and this revision, few new decay heat measurements have been reported in the literature. At the time this revision was completed, these new data had been integrated into the JENDL files [10]. These data were not incorporated into the fission yield evaluations for ENDF/B-VI since they were direct fission yield measurements. However, decay heat values calculated using the updated JENDL libraries have been compared with the recommended decay heat values in the 1994 standard [1] and were found to agree within the uncertainties cited in the standard [11].

The revised 2005 standard contains the main features of the 1994 standard except that the specific “simplified method” as described in the 1994 standard is incorporated in the 2005 standard in a new Appendix D as one example of a simplified model. A correction for Eq. (D.2) [formerly Eq. (13) in the 1994 standard] is included in the Appendix D example. Section 3.6 has been modified to permit substitution of a user-provided simplified model under the conditions specified. Minor corrections have also been made to Eqs. (10) and (C.6) and to the text in Section 3.5. The $G_{\text{max}}(t)$ values reported in Table 13 have been recalculated using CINDER’90 and ENDF/B-VI data [12]. The 1994 G_{max} values [13] were based on calculations performed with ENDF/B-IV data. The empirical representation of the correction factor for short times [Eq. (11)] is based on a parametric study of the influence of neutron capture on fission products as reported by Spinrad and Tripathi [14] and is not changed from the 1994 version of the standard.

The revised 2005 standard is the same as the previous versions of the standard in that

1. the standard prescribes fission product decay heat power and its uncertainty for reactor operating histories;
2. the standard prescribes data that are applicable to light water reactors (LWRs) of the type currently operating in the United States;

1) Numbers in brackets refer to corresponding numbers in “Foreword References” on p. iv.
(3) the standard prescribes the recoverable energy release rates from fission product decay but does not specify the spatial distribution of the deposition of the energy in reactor materials;

(4) decay heat power for ^{239}U and ^{239}Np are separately prescribed and are to be added to the fission product decay heat power;

(5) in the standard, the uncertainty is expressed in a statistical sense as one standard deviation in a normal distribution;

(6) the standard presents decay power for two irradiation conditions: (a) a fission pulse and (b) an irradiation of 10^{13} s to represent infinite reactor operation;

(7) the effect of neutron capture in fission products during reactor operation is accounted for in the revised standard. An upper bound for the effect of neutron capture in fission products that provides conservative values of decay heat power is given for the case of a long operation of a ^{235}U-fueled LWR at high neutron flux;

(8) for cooling times greater than 10^5 s, the standard is based solely upon summation calculations rather than empirical data and summation calculations as at shorter decay times;

(9) the formulations are based upon the assumption that the energy release per fission during operation Q_i for each nuclide is independent of time;

(10) a method is prescribed for obtaining decay heat power for arbitrary reactor operating histories from the standard;

(11) the decay heat power is related to the operating power of the reactor via the fission rate and the recoverable energy per fission during operation;

(12) decay heat power from activation products in reactor materials is not specified in the standard.

Features that distinguish the revised standard from the 1979 standard but are consistent with the 1994 standard are the following:

(1) The cooling-time region of validity has been extended to 10^{10} s. In the 1979 standard the time region of validity was 10^9 s;

(2) Data are prescribed for decay heat power from fission products from fissioning of the major fissionable nuclides present in LWRs, i.e., ^{235}U, ^{239}Pu, and ^{241}Pu thermal, and ^{238}U fast, and methods are prescribed for evaluating the total fission product decay heat power from the data given for these specific fuel nuclides. The 1979 standard gave standard curves for ^{235}U and ^{239}Pu thermal, and ^{238}U fast;

(3) The standard values adopted for ^{238}U are based upon an evaluation of new experimental data and summation calculations. In the 1979 standard, the values for ^{238}U were obtained solely from summation calculations;

(4) The standard values adopted for ^{241}Pu are based upon evaluation of experimental data and summation calculations. The 1979 standard did not give a separate set of values and prescribed that ^{235}U values should be used for contributions from all other fissioning actinides other than ^{239}Pu and ^{238}U;

(5) Standard values and uncertainties for pulse thermal fission ^{235}U have been revised for times after shutdown of 1.0, 1.5, and 2.0 s, based upon a recently published evaluation by Tobias [15] of all available experimental data for ^{235}U.
These changes involve increases of decay heat power of 16.2, 8.0, and 3.3%, respectively. Corresponding uncertainties have been reduced for these values from those given in the 1979 standard, also based on the Tobias evaluation;

(6) Standard values and uncertainties for pulse thermal fission of 235U have been revised for times after shutdown greater than 1.5×10^9 s. These changes reflect improved nuclear data and uncertainties used in summation calculations for long-lived fission products, principally 99Tc and 126Sn;

(7) Standard uncertainties for pulse thermal fission of 239Pu have been revised for times after shutdown of 1.0, 1.5, and 2.0 s and between 20 and 15,000 s, based on the Tobias evaluation [15] of all available experimental data for 239Pu, as well as the excellent agreement of the experimental results of Akiyama et al. [5] with the results of Dickens et al. [3];

(8) Standard values and uncertainties for pulse thermal fission of 239Pu have been revised for times after shutdown greater than 5×10^9 s, reflecting improved nuclear data and uncertainties used in summation calculations for long-lived fission products, principally 99Tc and 126Sn.

Summation calculations by Ryman et al. [16] for long cooling times in support of U.S. Nuclear Regulatory Commission Regulatory Guide (RG) 3.54 [17] on spent-fuel storage are in good agreement with data predicted by the 1979 standard; RG 3.54 accepts the use of the 1979 standard in its cooling-time region of validity. Isotope inventory codes [13] that use summation techniques to predict decay heat power have been subjected to a controlled intercomparison [18,19] and found to provide essentially equivalent results. Dickens et al. [9] compare the 1979 standard with international decay heat power standards or proposed standards [20–22].

Further revisions of the standard are planned to

(1) improve the capture effect specification;
(2) include contributions from actinides not already included;
(3) specify total recoverable energy Q for major elements;
(4) separate beta-ray and gamma-ray components;
(5) complete separate data sets for other fuel elements and other neutron energies.

The foregoing items (1), (2), and (3) were included in the recommendations for near-term improvements to the standard by Dickens et al. [9].

The formal presentation of the revised standard is the same as for the 1994 standard, thus allowing ease in upgrading computer programs. Users applying the standard to reactor safety analysis should justify that the inputs (e.g., the recoverable energy Q) to the standard are appropriate.

Fission product yields and uncertainties used in summation calculations for the revised standard are consistent with ANS-19.8, “Fission-Product Yields for 235U, 238U, and 239Pu” (in draft form).

Foreword References

The working group acknowledges and appreciates the substantial efforts of earlier working groups in establishing and maintaining this standard. The changes from the previous version to this were minor and do not alter the technical basis of the standard. In this respect, we have included the names of the working group that established the 1994 version of the standard.

Working Group ANS-5.1 of the Standards Committee of the American Nuclear Society had the following membership at the time of the approval of the 1994 version of this standard:

W. B. Wilson (Chair), Los Alamos National Laboratory
R. E. Schenter (Past Chair), Westinghouse Hanford Company

H. Alter, U.S. Department of Energy
M. C. Brady, Sandia National Laboratories
J. K. Dickens, Oak Ridge National Laboratory
T. R. England, Los Alamos National Laboratory
J. Katakura, Japan Atomic Energy Research Institute
L. D. Noble, General Electric Company
K. Shure, Westinghouse Bettis Laboratory
T. Yoshida, Toshiba Corporation

Working Group ANS-5.1 of the Standards Committee of the American Nuclear Society had the following membership at the time of its approval of this revision of the standard:

M. C. Brady Raap (Chair), Pacific Northwest National Laboratory
W. B. Wilson (Past Chair), Los Alamos National Laboratory

C. R. Boss, Atomic Energy of Canada Limited
J. K. Dickens, Oak Ridge National Laboratory (retired)
T. R. England, Los Alamos National Laboratory (retired)
I. Gauld, Oak Ridge National Laboratory
J. Katakura, Japan Atomic Energy Research Institute
E. Knuckles, Florida Power & Light
N. Lauben, U.S. Nuclear Regulatory Commission
C. Martin, General Electric Company
R. Schenter, Pacific Northwest National Laboratory
V. Schrock, University of California, Berkeley (retired)
R. Talbert, Pacific Northwest National Laboratory
H. Trellue, Los Alamos National Laboratory
T. Yoshida, Musashi Institute of Technology
The membership of Subcommittee ANS-19 at the time of the review and approval of this standard was as follows:

D. M. Cokinos (Chair), Brookhaven National Laboratory
C. T. Rombough (Secretary), CTR Technical Services, Inc.

S. Baker, Transware Enterprises, Inc.
M. C. Brady Raap, Pacific Northwest National Laboratory
R. J. Cacciapouti, Framatome ANP
Y. A. Chao, Westinghouse
W. S. Charlton, Texas A&M University
R. T. Chiang, GE Nuclear Energy
D. J. Diamond, Brookhaven National Laboratory
J. Katakura, Japan Atomic Energy Research Institute
R. C. Little, Los Alamos National Laboratory
L. Lois, U.S. Nuclear Regulatory Commission
R. D. McKnight, Argonne National Laboratory
R. D. Mosteller, Los Alamos National Laboratory
R. T. Perry, Los Alamos National Laboratory
B. Rouben, Atomic Energy of Canada Limited
A. Weitzberg, Individual
S. Weiss, National Institute of Standards and Technology

The membership of the N-17 Consensus Committee at the time of the review and approval of this standard was as follows:

T. M. Raby (Chair), National Institute of Standards and Technology
A. Weitzberg (Vice Chair), Individual

W. H. Bell, American Institute of Chemical Engineers
(Alt. R. D. Zimmerman, American Institute of Chemical Engineers)
R. E. Carter, Individual
D. Cokinos, Brookhaven National Laboratory
D. Dodd, Health Physics Society
W. A. Holt, American Public Health Association
W. C. Hopkins, Individual
L. I. Kopp, Individual
P. M. Madden, U.S. Nuclear Regulatory Commission
(Alt. A. Adams, U.S. Nuclear Regulatory Commission)
J. F. Miller, Institute of Electrical and Electronics Engineers
J. E. Olhoeft, Individual
W. J. Richards, National Institute of Standards and Technology
R. Seale, University of Arizona
T. R. Schmidt, Sandia National Laboratories
A. O. Smetana, Savannah River National Laboratory
E. G. Tourigny, U.S. Department of Energy
S. H. Weiss, National Institute of Standards and Technology
(Alt. T. J. Myers, National Institute of Standards and Technology)
W. L. Whittemore, General Atomics
Contents

1 Scope and purpose ... 1
 1.1 Scope .. 1
 1.2 Purpose and application ... 1

2 Limitations ... 1
 2.1 General .. 1
 2.2 Limitations on use of standard fission product decay heat power representation .. 1
 2.3 Spatial distribution ... 1

3 Fission product decay heat power 2
 3.1 Definition of terms .. 2
 3.2 General .. 2
 3.3 Determining decay heat power and uncertainty from \(f(t) \) 11
 3.4 Determining decay heat power and its uncertainty from \(F(t, \infty) \) ... 11
 3.5 Effect of neutron capture in fission products 13
 3.6 Simplified method for determining decay heat power and uncertainty ... 15

4 \(^{239}\text{U}\) and \(^{239}\text{Np}\) decay heat power 17

5 Shutdown times \(>10^{10} \) s ... 22

Figure
 Figure 1 Example of a reactor power history 23

Tables
 Table 1 Tabular data for standard decay heat power for pulse thermal fission of \(^{235}\text{U}\) .. 3
 Table 2 Tabular data for standard decay heat power for pulse thermal fission of \(^{239}\text{Pu}\) .. 5
 Table 3 Tabular data for standard decay heat power for pulse fast fission of \(^{238}\text{U}\) ... 7
 Table 4 Tabular data for standard decay heat power for pulse thermal fission of \(^{241}\text{Pu}\) 9
 Table 5 Tabular data for standard decay heat power for thermal fission of \(^{235}\text{U}\) following an irradiation of \(10^{13}\) s 12
 Table 6 Tabular data for standard decay heat power for thermal fission of \(^{239}\text{Pu}\) following an irradiation of \(10^{13}\) s 14
 Table 7 Tabular data for standard decay heat power for fast fission of \(^{238}\text{U}\) following an irradiation of \(10^{13}\) s 16
 Table 8 Tabular data for standard decay heat power for thermal fission of \(^{241}\text{Pu}\) following an irradiation of \(10^{13}\) s 18
 Table 9 Parameters for \(^{235}\text{U}\) thermal fission functions \(f(t) \) and \(F(t, \infty) \) ... 20
 Table 10 Parameters for \(^{239}\text{Pu}\) thermal fission functions \(f(t) \) and \(F(t, \infty) \) ... 20
 Table 11 Parameters for \(^{238}\text{U}\) fast fission functions \(f(t) \) and \(F(t, \infty) \) 21
 Table 12 Parameters for \(^{241}\text{Pu}\) thermal fission functions \(f(t) \) and \(F(t, \infty) \) ... 21
 Table 13 Ratio decay heat with absorption to values without absorption ... 22
Appendices

Appendix A Excerpt from the Foreword to the 1979 ANS Standard for Decay Heat Power ... 24

Figure A.1 Comparison of revised standard $F(t,\infty)$ for 235U (1979) with 1973 standard .. 27

Appendix B Examples of the Use of the Standard ... 31

Table B.1 Example 1: Decay heat power relative to operating power ... 32

Table B.2 Example 2: Decay heat power relative to operating power ... 32

Table B.3 Example 3: Decay heat power relative to operating power ... 33

Appendix C Additional Terms and Values ... 34

Table C.1 Evaluated Q values pertaining to decay heat power calculations ... 35

Table C.2 Some useful cross-section values ... 35

Appendix D Example of a Simplified Method ... 37

Table D.1 Simplified method example, decay heat power relative to operating power ... 38