Find erratum inside front cover. If erratum is missing, contact the ANS Standards Department at Standards@ans.org or 708-579-8269 for replacement copy.

American Nuclear Society

WITHDRAWN

July 28, 2000 ANSI/ANS-56.2-1984;R1989

containment isolation provisions for fluid systems after a LOCA

REAFFIRMED

April 26, 1989 ANSI/ANS-56.2-1984 (R1989)

an American National Standard

No longer being maintained as an American National Standard. This standard may contain outdated material or may have been superseded by another standard. Please contact the ANS Standards Administrator for details.

published by the
American Nuclear Society
555 North Kensington Avenue
La Grange Park, Illinois 60525 USA

555 North Kensington Avenue La Grange Park, Illinois 60526-5592 USA Tel: 708/352-6611 E-Mail: NUCLEUS@ans.org http://www.ans.org Fax: 708/352-0499

It is intended that this statement be placed on the list of

Historical American National Standards

published by

The American Nuclear Society

Users of these documents should be aware that these standards either have been superceded, or they have not been maintained in accordance with ANSI/ANS requirements. They can be made available to users in printed format or electrostatic copies and will be priced accordingly.

ERRATA

American National Standard Containment Isolation Provisions for Fluid Systems After a LOCA, ANSI/ANS-56.2-1984

Page 8, Subsection 3.4, Valve Design Criteria, second sentence:

The word "inside" should replace the word "outside" in the second sentence of subsection 3.4; it should read:

A containment isolation valve can be an automatic isolation valve, a sealed closed valve (see sealed closed isolation valve, Section 2, Definitions), a simple check valve inside containment, or a remote manual valve.

Page 8, Subsection 3.5, Criteria for Closed Systems Inside Containment, item (3):

The words "or 3" should be inserted in (3), as follows:

A closed system inside containment shall: . . .

(3) Meet Safety Class 2 or 3 design requirements,

November 1988

American National Standard Containment Isolation Provisions for Fluid Systems After a LOCA

Secretariat
American Nuclear Society

Prepared by the American Nuclear Society Standards Committee Working Group ANS-56.2

Published by the American Nuclear Society 555 North Kensington Avenue La Grange Park, Illinois 60525 USA

Approved December 31, 1984 by the American National Standards Institute, Inc.

American National Standard

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This American National Standard may be reviewed or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Purchasers of this standard may receive current information, including interpretation, on all standards published by the American Nuclear Society by calling or writing to the Society.

Published by

American Nuclear Society 555 North Kensington Avenue, La Grange Park, Illinois 60525 USA

Copyright © 1984 by American Nuclear Society

Any part of this standard may be quoted. Credit lines should read "Extracted from American National Standard ANSI/ANS-56.2-1984 with permission of the publisher, the American Nuclear Society." Reproduction prohibited under copyright convention unless written permission is granted by the American Nuclear Society.

Printed in the United States of America

Foreword (This Foreword is not a part of American National Standard Containment Isolation Provisions for Fluid Systems After a LOCA, ANSI/ANS-56.2-1984.)

This revision to N271-1976 has been prepared by Working Group ANS-56.2 of the American Nuclear Society. The working group was asked by the Nuclear Power Plant Standards Committee (NUPPSCO) of the American Nuclear Society to reconvene for the purpose of reviewing N271-1976, in light of the events of March 28, 1979, at Three Mile Island - Unit 2.

The ANS-56.2 Working Group was reconstituted in August 1979. Upon reviewing this standard, the Working Group found that N271-1976 provides proper guidance for the design of the containment isolation provisions of fluid systems which penetrate the primary containment boundary of light water reactors. It was determined, however, that more specific guidance was required for the actuation of these containment isolation provisions. Accordingly, this revision to N271-1976 contains criteria for containment isolation provisions actuation, including diversity of actuation parameters and the concept of phased isolation.

Other modifications made to this standard include an updating of the references, an updating of Appendix A, the addition of criteria for the protection of the isolation provisions against overpressure from thermal expansion, and the inclusion of criteria for the use of relief valves in the forward flow direction as containment isolation valves.

The purpose of this revision to N271-1976 remains the same as that of the original standard, i.e., to specify minimum design requirements for fluid systems which penetrate the primary containment boundary of light water reactors to provide for isolation of the containment. The objective of the standard is to assist designers of containment isolation provisions in providing systems which meet applicable standards, codes, and regulations. Designers of the fluid systems, containment penetrations, electrical systems, etc., which are involved with a containment isolation function must consider the requirements of the isolation function as well as the fluid system requirements. This standard is also intended to assist the plant operating staff with respect to performance testing and maintenance.

As of November 1983, the membership of ANS-56.2 was:

- P. A. Totten, Chairman, Gibbs & Hill, Incorporated
- R. A. Berry, Stone & Webster Engineering Company
- R. A. Bruce, Westinghouse Electric Corporation
- E. V. Imbro, U.S. Nuclear Regulatory Commission
- J. O. Schuyler, Pacific Gas & Electric Company
- R. S. Turk, Combustion Engineering, Inc.

C. Christensen (General Electric Company) and J.C. Evans (Babcock & Wilcox Company) were also members of the working group during part of the revision process.

This standard provides guidance in satisfying several of the General Design Criteria of Title 10 of the Code of Federal Regulations, Part 50, Appendix A and the systems criteria developed by the ANS NUPPSCO.

This standard considers only a single active failure after the loss-of-coolant accident or any other accident requiring actuation of the same containment isolation provisions. Any other failure requirements are not addressed in this standard. Specific guidance on the single failure for LWR fluid systems is contained in American National Standard Single Failure Criteria for LWR Safety-Related Fluid Systems, ANSI/ANS-58.9-1981. The Working Group still notes that there is no standard which identifies an explicit list of plant conditions requiring protection system function including containment isolation. It was believed inappropriate for the present standard to develop those conditions requiring containment isolation. The working group has recommended to NUPPSCO that a separate working group should be formed for the purpose of preparing a standard dealing with containment isolation requirements for accidents other than LOCAs, if NUPPSCO believes it is necessary to address the subject of accident isolation.

The appendices are provided to illustrate methods of application of the standard, but are not mandatory or part of the standard. The footnotes are provided for guidance, but are not mandatory or part of the standard.

*The American Nuclear Society's Nuclear Power Plant Standards Committee (NUPP-SCO) had the following membership at the time of its approval of this standard in May 1980.

J. F. Mallay, Chairman M. D. Weber, Secretary

Name of Representative	Organization Represented
R. E. Allen (Alt.)	
R. V. Bettinger	Pacific Gas and Electric Company
P. Bradbury	
C. O. Coffer	
L. J. Cooper	
W. H. D'Ardenne	General Electric Company
C. J. Gill	Bechtel Power Corporation
H. J. Green	
W. Johnson	
K. W. Keaten	
o. r. Manay	(for the American Nuclear Society)
A. T. Molin	
J. H. Noble	
E. P. O'Donnell	Ebasco Services, Inc.
	(for the Atomic Industrial Forum)
T. J. Pashos	Quadrex/Nuclear Services Corporation
M. E. Remley	
J. Stacey	
o. D. Governou	(for the American Society of Civil Engineers)
G. Wagner	
G. L. Wessman	Torrey Pines Technology
J. E. Windhorst	Southern Company Services, Inc.
E. R. Wiot	NUS Corporation

^{*}This roster indicates NUPPSCO members' affiliations at the time of consensus committee ballot.

Contents	Se	ction
	1.	Purpose and Scope
	2.	Definitions and Terminology
	3.	Design Criteria
	4.	Design Requirements 11 4.1 General 11 4.2 General Requirements 11 4.3 Actuation 11 4.4 Containment Isolation Barrier Design 11 4.5 Isolation Barrier Protection 15 4.6 Isolation Barrier Environmental Requirements 16 4.7 Isolation Valve Design 16 4.8 Instrument Lines 16 4.9 Valve Operators 16 4.10 Flanged Closures 17 4.11 Isolation Valve Seal System 17 4.12 Determination of Isolation Requirements for 17 Remote Manual Controlled Systems 17 4.13 Design Documentation 17 4.14 Piping Between Isolation Barriers or Piping 17 Which Forms Part of Isolation Barriers 17
	5.	Testing 18 5.1 General 18 5.2 Operability Testing 18 5.3 Leakage Rate Testing 18
	6.	Maintenance 18 6.1 General 18 6.2 Procedures 18 6.3 Isolation Valve Maintenance Program 18
	7.	Materials
	8.	References

Appendices	
Appendix	A Typical Boiling Water Reactor System Diagrams
Appendix	
Appendix	
Appendix	
Tables	
Table A-1	Other Defined Basis Conformance Typical
	Boiling Water Reactor
Table B-1	Other Defined Basis Conformance Typical
	Pressurized Water Reactor
Figures	
Fig. 1	General Design Criteria 55 and 56 — Isolation Valve Criteria6
Fig. 2	General Design Criterion 57 — Isolation Valve Criteria
Fig. 3	Example of Inherent Overpressure Protection
Fig. 4	Example of Inherent Overpressure Protection
Fig. 5	Example of Provisions for Overpressure Protection
Fig. 6	Example of Provisions for Overpressure Protection
Fig. A-1	Typical Feedwater System — Feedwater Lines
Fig. A-2	Typical Emergency Core Cooling System — Influent Line
Fig. A-3	Typical Main Steam System — Main Steam Lines
Fig. A-4	Typical Residual Heat Removal System — Effluent Lines
Fig. A-5	Typical Lines Which Connect to Suppression Pool —
8	ECCS Minimum Flow and Suppression Pool
	Cooling/Test Lines
Fig. A-6	Typical Containment Ventilation System — Influent Line
Fig. A-7	Typical Containment Pressurization System —
1 18. 11 1	Pressurization Line
Fig. A-8	Typical Lines Which Connect to Suppression Pool —
8 0	Pump Suction Line
Fig. A-9	Typical Containment Ventilation System — Effluent Line
Fig. A-10	Typical Instrument System — Instrument Line
Fig. A-11	Typical Fuel Transfer System — Fuel Transfer Line
Fig. A-12	Typical Closed Loop System — Effluent and Influent Lines
Fig. B-1	Typical Component Cooling Water System —
8. ~ -	Reactor Coolant Pump Lines42
Fig. B-2	Typical Emergency Core Cooling System —
1.6. 22	Accumulator Nitrogen Supply Lines
Fig. B-3	Typical Safety Injection System — High
1.8.20	Head Safety Injection Connections
Fig. B-4	Typical Dead Weight Calibrator
Fig. B-5	Typical Residual Heat Removal System — Effluent Lines
Fig. B-6	Typical Refueling Canal Cooling System —
- 18. 20	Influent and Effluent Lines
Fig. B-7	Typical Service Air Line
Fig. B-8	Typical Safety Injection System — Recirculation
1 16. 20	Line from Containment Sump
Fig. B-9	Typical Post Accident Sampling System
Fig. B-10	Typical Containment Pressure Instruments
Fig. B-11	Typical Containment Vacuum Relief Line
Fig. B-12	Typical Post Accident Containment Venting System
Fig. B-13	Typical Containment Spray System
Fig. B-14	Typical Component Cooling Water System —
6 11	Influent and Effluent Lines