American National Standard
Probabilistic Seismic Hazards Analysis

Secretariat
American Nuclear Society

Prepared by the
American Nuclear Society
Standards Committee
Working Group ANS-2.29

Published by the
American Nuclear Society
555 North Kensington Avenue
La Grange Park, Illinois 60526 USA

Approved July 31, 2008
by the
American National Standards Institute, Inc.
Designation of this document as an American National Standard attests that
the principles of openness and due process have been followed in the approval
procedure and that a consensus of those directly and materially affected by
the standard has been achieved.

This standard was developed under procedures of the Standards Committee of
the American Nuclear Society; these procedures are accredited by the Amer-
ican National Standards Institute, Inc., as meeting the criteria for American
National Standards. The consensus committee that approved the standard
was balanced to ensure that competent, concerned, and varied interests have
had an opportunity to participate.

An American National Standard is intended to aid industry, consumers, gov-
ernmental agencies, and general interest groups. Its use is entirely voluntary.
The existence of an American National Standard, in and of itself, does not
preclude anyone from manufacturing, marketing, purchasing, or using prod-
ucts, processes, or procedures not conforming to the standard.

By publication of this standard, the American Nuclear Society does not insure
anyone utilizing the standard against liability allegedly arising from or after
its use. The content of this standard reflects acceptable practice at the time of
its approval and publication. Changes, if any, occurring through developments
in the state of the art, may be considered at the time that the standard is
subjected to periodic review. It may be reaffirmed, revised, or withdrawn at
any time in accordance with established procedures. Users of this standard
are cautioned to determine the validity of copies in their possession and to
establish that they are of the latest issue.

The American Nuclear Society accepts no responsibility for interpretations of
this standard made by any individual or by any ad hoc group of individuals.
Requests for interpretation should be sent to the Standards Department at
Society Headquarters. Action will be taken to provide appropriate response in
accordance with established procedures that ensure consensus on the
interpretation.

Comments on this standard are encouraged and should be sent to Society
Headquarters.

Published by

American Nuclear Society
555 North Kensington Avenue
La Grange Park, Illinois 60526 USA

Copyright © 2008 by American Nuclear Society. All rights reserved.

Any part of this standard may be quoted. Credit lines should read “Extracted from
American National Standard ANSI/ANS-2.29-2008 with permission of the publisher,
the American Nuclear Society.” Reproduction prohibited under copyright convention
unless written permission is granted by the American Nuclear Society.

Printed in the United States of America
Foreword

This Foreword is not a part of the American National Standard “Probabilistic Seismic Hazards Analysis,” ANSI/ANS-2.29-2008.)

This standard establishes requirements for performing probabilistic seismic hazard analyses (PSHAs). It is one of a group of four standards that establish requirements for the seismic design process for nuclear facilities. Figure A shows the relationship between this standard and the other three seismic standards: American National Standards Institute/American Nuclear Society ANSI/ANS-2.26-2004, “Categorization of Nuclear Facility Structures, Systems, and Components for Seismic Design”; ANSI/ANS-2.27-2008, “Criteria for Investigations of Nuclear Facility Sites for Seismic Hazard Assessments”; and American Society of Civil Engineers/Structural Engineering Institute ASCE/SEI 43-05, “Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities.” The procedural relationship among these standards is further described in ANSI/ANS-2.26-2004. The user should consult ASCE/SEI 43-05 to see how the information produced by ANSI/ANS-2.29-2008 is used in developing seismic loads specific to a structure, system, or component (SSC).

As described in ANSI/ANS-2.26-2004 and ASCE/SEI 43-05, the seismic design process for nuclear facilities is based on the consequences of seismically initiated failure of SSCs and specified limit states and design requirements. The seismic design categories identified in ANSI/ANS-2.26-2004 and the design requirements in ASCE/SEI 43-05 aim to satisfy target performance goals defined in terms of the annual probability of exceeding specified SSC performance. Achieving

Figure A – Schematic showing the relationships of the seismic standards
a target performance goal is directly related to the probability of a seismic load. Therefore, the results of a PSHA are required as input to the seismic design process. ANSI/ANS-2.29-2008 establishes procedures for performing a PSHA needed to support selection of the seismic loads used in ASCE/SEI 43-05. The methods specified herein can also be used to support other applications, such as seismic probabilistic risk analyses.

This standard might reference documents and other standards that have been superseded or withdrawn at the time the standard is applied. A statement has been included in the reference section that provides guidance on the use of references.

The ANS-2.29 Working Group of the Standards Committee of the American Nuclear Society (ANS) had the following membership:

J. Savy (Chair), Risk Management Solutions, Inc.

J. Ake, U.S. Nuclear Regulatory Commission
K. Campbell, EQECAT, Inc.
N. Chokshi, U.S. Nuclear Regulatory Commission
K. Coppersmith, Coppersmith Consulting
C. Costantino, Individual
C. B. Crouse, URS Corporation
A. Hadjian, Defense Nuclear Facilities Safety Board
Q. Hossain, Lawrence Livermore National Laboratory
J. Kimball, U.S. Department of Energy
J. King, Individual
R. Lee, Individual
M. McCann, JBA Associates
M. Power, Geomatrix Consultants, Inc.
G. Toro, Risk Engineering, Inc.
I. Wong, URS Corporation
R. Youngs, Geomatrix Consultants, Inc.

This standard was prepared under the guidance of the Nuclear Facilities Standards Committee (NFSC) Subcommittee ANS-25 (Siting) of the ANS. At the time of the ballot, Subcommittee ANS-25 was composed of the following members:

Kevin Bryson (Chair), Shaw Environmental, Inc.

J. Bollinger, Savannah River National Laboratory
C. Costantino, Individual
P. Fledderman, Westinghouse Savannah River Company
D. Hang, University of Illinois-Urbana
K. L. Hanson, Geomatrix Consultants, Inc.
J. Litehiser, Bechtel Corporation, Inc.
S. Marsh, Southern California Edison Company
D. Pittman, Tennessee Valley Authority
J. Savy, Risk Management Solutions, Inc.
R. D. Spence, UT-Battelle, LLC
J. D. Stevenson, J.D. Stevenson & Associates

The standard was processed and approved for submittal to ANSI by the NSFC of the ANS. Committee approval of the standard does not necessarily imply that all members voted for approval. At the time it approved this standard, the NFSC had the following membership:

C. A. Mazzola (Chair), Shaw Environmental & Infrastructure, Inc.
R. M. Ruby (Vice Chair), Constellation Energy

J. K. August, CORR, Inc.
W. H. Bell, South Carolina Electric & Gas Company
J. R. Brault, Shaw MOX Project
C. K. Brown, Southern Nuclear Operating Company
R. H. Bryan, Tennessee Valley Authority
K. R. Bryson, Shaw Environmental, Inc.
T. Dennis, Individual
D. R. Eggett, AES Engineering
R. W. Englehart, U.S. Department of Energy
R. Hall, Exelon Generation Company, LLC
P. S. Hastings, Duke Energy
R. A. Hill, ERIN Engineering and Research, Inc.
N. P. Kadambi, U.S. Nuclear Regulatory Commission
M. P. LaBar, General Atomics
E. M. Lloyd, Exitech Corporation
E. P. Loewen, General Electric
S. A. Lott, Los Alamos National Laboratory
J. E. Love, Bechtel Power Corporation
R. H. McFetridge, Westinghouse Electric Corporation
C. H. Moseley, ASME/NQA Liaison (BWXT Y-12)
D. G. Newton, AREVA NP
W. N. Prillaman, AREVA NP
W. B. Reuland, Individual
D. M. Reynerson, Phoenix Index
R. E. Scott, Individual
D. J. Spellman, Oak Ridge National Laboratory
S. L. Stamm, Shaw Stone & Webster
J. D. Stevenson, Individual
C. D. Thomas, Individual
J. A. Wehrenberg, Southern Nuclear Operating Company
M. J. Wright, Entergy Operations, Inc.
<table>
<thead>
<tr>
<th>Contents</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Scope</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2 Acronyms and terms</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.1 Acronyms</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.2 Glossary of terms</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3 PSHA purpose, objective, and process</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>3.1 Purpose and objective</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>3.2 PSHA process</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>3.3 Uncertainty assessment principles in PSHA</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>3.4 Estimation of seismic hazard</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>3.4.1 Evaluation of aleatory uncertainty</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>3.4.2 Propagation of epistemic uncertainty</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>3.5 Method of review</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>4 General requirements</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>4.1 High-level requirements</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>4.2 Organization</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4.3 Selecting an appropriate PSHA level</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>5 Detailed requirements</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>5.1 PSHA model requirements</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>5.1.1 Lower-bound magnitude</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>5.1.2 General requirements on treatment of uncertainty</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>5.1.3 PSHA aleatory model</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>5.1.4 PSHA epistemic uncertainty</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>5.1.5 Communication of uncertainty</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>5.2 Seismic source characterization</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>5.2.1 Tectonic framework</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>5.2.2 Seismic source geometry</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>5.2.3 Source distances and level of modeling detail</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>5.2.4 Activity or existence of seismic sources</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>5.2.5 Earthquake recurrence relationships</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>5.2.5.1 Magnitude-frequency relationship</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>5.2.5.2 Temporal earthquake occurrence</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>5.3 Ground motion estimation</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>5.3.1 Ground motion characterization</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>5.3.2 Attenuation model</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>5.3.3 Seismological parameters</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>5.3.3.1 Earthquake magnitude</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>5.3.3.2 Style of faulting</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>5.3.3.3 Distance</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>5.3.3.4 Local site conditions</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>5.3.3.5 Aleatory uncertainty in ground motion estimation</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>5.3.4 Model selection</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>5.3.5 Tectonic environment</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>5.3.6 Epistemic uncertainty</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>5.4 Site response assessment</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>5.4.1 Approaches</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>5.4.2 Approach using attenuation relationships</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>5.4.3 Approach using site transfer functions</td>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>