American Nuclear Society

Home / Store / Journals / Electronic Articles / Nuclear Technology / Volume 186 / Number 2 / Pages 161-178

MELCOR Simulations of the Severe Accident at the Fukushima Daiichi Unit 1 Reactor

Randall Gauntt, Donald Kalinich, Jeffrey Cardoni, and Jesse Phillips

Nuclear Technology / Volume 186 / Number 2 / Pages 161-178

May 2014


Member Price:$27.00
Member Savings:$3.00

In response to the accident at the Fukushima Daiichi nuclear power station in Japan, the U.S. Nuclear Regulatory Commission and U.S. Department of Energy agreed to jointly sponsor an accident reconstruction study as a means of assessing the severe accident modeling capability of the MELCOR code and developing an understanding of the likely accident progression. Objectives of the project included reconstruction of the accident progressions using computer models and accident data, and validation of MELCOR and the Fukushima models against plant data. In this study Sandia National Laboratories developed MELCOR 2.1 models of Fukushima Daiichi Units 1 (1F1), 2, and 3 as well as the Unit 4 spent fuel pool. This paper reports on the analysis of the 1F1 accident. Details are presented on the modeled accident progression, hypothesized mode of failures in the reactor pressure vessel (RPV) and containment pressure boundary, and release of fission products to the environment. The MELCOR-predicted RPV and containment pressure trends compare well with available measured pressures. Conditions leading up to the observed explosion of the reactor building are postulated based on this analysis where drywell head flange leakage is thought to have led to accumulation of flammable gases in the refueling bay. The favorable comparison of the results from the analyses with the data from the plant provides additional confidence in MELCOR to reliably predict real-world accident progression. The modeling effort has also provided insights into future data needs for both model development and validation.

Questions or comments about the site? Contact the ANS Webmaster.