American Nuclear Society

Home / Store / Journals / Electronic Articles / Nuclear Technology / Volume 112 / Number 2

Irradiation Performance of Fast Flux Test Facility Drivers Using D9 Alloy

A. L. Pitner, B. C. Gneiting, F. E. Bard

Nuclear Technology

Volume 112 / Number 2 / November 1995 / Pages 194-203


Member Price:$27.00
Member Savings:$3.00

In comparison with the Fast Flux Test Facility Type 316 stainless steel driver design, six test assemblies employing D9 alloy in place of stainless steel for duct, cladding, and wire wrap material were irradiated to demonstrate the improved performance and lifetime capability of an advanced D9 alloy driver design. A single pinhole-type breach occurred in one of the high-exposure tests after a peak fuel burnup of 155 MWd/kg metal (M) and peak fast neutron fluence of 25 × 1022 n/cm2 (E > 0.1 MeV). Postirradiation examinations were performed on four of the test assemblies and measured results were compared with analytical evaluations. A revised swelling correlation for D9 alloy was developed to provide improved agreement between calculated and measured cladding deformation results. A fuel pin lifetime design criterion of 5% calculated hoop strain was derived from these results. Alternatively, fuel pin lifetimes were developed for two irradiation parameters using statistical failure analyses. For a 99.99% reliability, the analyses indicated a peak fast-fluence lifetime of 21.0 × 1022 n/cm2, or a peak fuel burnup > 120 MWd/kg M. In comparison with the Fast Flux Test Facility reference driver design, the extended lifetime capability of D9 alloy would reduce fuel supply requirements for the liquid-metal reactor by a third.

Questions or comments about the site? Contact the ANS Webmaster.