American Nuclear Society
Home

Home / Store / Journals / Electronic Articles / Nuclear Technology / Volume 138 / Number 2 / Pages 97-110

Revised Burnup Code System SWAT: Description and Validation Using Postirradiation Examination Data

Kenya Suyama, Hiroki Mochizuki, Takehide Kiyosumi

Nuclear Technology / Volume 138 / Number 2 / Pages 97-110

May 2002

Format:

Price:$30.00
Member Price:$27.00
Member Savings:$3.00

The burnup code system Step-Wise Burnup Analysis Code System (SWAT) is revised for use in a burnup credit analysis. An important feature of the revised SWAT is that its functions are achieved by calling validated neutronics codes without any changes to the original codes. This feature is realized with a system function of the operating system, which allows the revised SWAT to be independent of the development status of each code.

A package of the revised SWAT contains the latest libraries based on JENDL-3.2 and the second version of the JNDC FP library. These libraries allow us to analyze burnup problems, such as an analysis of postirradiation examination (PIE), using the latest evaluated data of not only cross sections but also fission yield and decay constants.

Another function of the revised SWAT is a library generator for the ORIGEN2 code, which is one of the most reliable burnup codes. ORIGEN2 users can obtain almost the same results with the revised SWAT using the library prepared by this function.

The validation of the revised SWAT is conducted by calculation of the Organization for Economic Cooperation and Development/Nuclear Energy Agency burnup credit criticality safety benchmark Phase I-B and analyses of PIE data for spent fuel from Takahama Unit 3. The analysis of PIE data shows that the revised SWAT can predict the isotopic composition of main uranium and plutonium with a deviation of 5% from experimental results taken from UO2 fuels of 17 × 17 fuel assemblies. Many results of fission products including samarium are within a deviation of 10%. This means that the revised SWAT has high reliability to predict the isotopic composition for pressurized water reactor spent fuel.

 
 
 
Questions or comments about the site? Contact the ANS Webmaster.
advertisement