American Nuclear Society
Home

Home / Store / Journals / Electronic Articles / Nuclear Technology / Volume 134 / Number 2

Numerical Study of Coolant Mixing Caused by the Flow Deflectors in a Nuclear Fuel Bundle

Wang Kee In

Nuclear Technology / Volume 134 / Number 2 / Pages 187-195

May 2001

Format:

Price:$30.00
Member Price:$27.00
Member Savings:$3.00

A numerical study was conducted to investigate the nuclear fuel assembly coolant flow mixing that is promoted by the flow deflectors on the grid spacer. Four typical flow deflectors (split vane, side-supported vane, swirl vane, and twisted vane) were chosen for this study. A single subchannel of one grid span is modeled using the flow symmetry. The predicted axial and lateral mean flow velocities, and the turbulent kinetic energy in the subchannel for the split-vane design, are in good agreement with the experimental results.

The split vane and the twisted vane generate a large cross flow between the subchannels and a skewed elliptic swirling flow in the subchannel near the grid spacer. The cross flow rapidly decreases and the swirling flow becomes dominant downstream of the spacer. The side-supported vane induces a horizontally elongated elliptic swirl in the subchannel and a secondary flow in the near downstream of the spacer. The swirl vane produces a circular swirling flow in the subchannel and a negligible cross flow. For the twisted-vane and side-supported vane designs, the change in direction of the cross flow was predicted. The average turbulent kinetic energy in the subchannel sharply increases near the spacer and rapidly decreases to a fully developed level. In summary, the numerical results showed a somewhat large difference from the experimental results near the spacer but represented the overall characteristics of coolant mixing well in a nuclear fuel bundle with the flow deflectors on the grid spacer.

 
 
 
Questions or comments about the site? Contact the ANS Webmaster.
advertisement