American Nuclear Society

Home / Store / Journals / Electronic Articles / Nuclear Science and Engineering / Volume 61 / Number 1

Analysis of the Coarse-Mesh Rebalancing Effect on Chebyshev Polynomial Iterations

S. Nakamura

Nuclear Science and Engineering

Volume 61 / Number 1 / September 1976 / Pages 98-106


Member Price:$27.00
Member Savings:$3.00

The accelerating effect of coarse-mesh rebalancing on the low-order Chebyshev polynomial iterations to obtain the fundamental eigenvector of large homogeneous linear systems associated with elliptic partial-differential equations is mathematically analyzed. Coarse-mesh rebalancing is shown to have a positive accelerating effect if one of the following conditions is met: (a) the weighting vectors are not contaminated with high eigenvector components, (b) Galerkin's weighting vectors are used, or (c) the non-Galerkin weighting vectors are similar to the trial vectors. As another interesting result, it is shown that the overshooting effect is related to the fourth and higher eigenvector components that have spatially odd parities. If the above condition, (c), is met, there is no overshooting; otherwise, the acceleration effect with non-Galerkin weighting vectors is unpredictable.

Questions or comments about the site? Contact the ANS Webmaster.