American Nuclear Society

Home / Store / Journals / Electronic Articles / Nuclear Science and Engineering / Volume 61 / Number 2

Solution of the Fuel Burnup Control Problem with a Controlling Neutron Equation and Walsh Functions

Ryuji Koga

Nuclear Science and Engineering

Volume 61 / Number 2 / October 1976 / Pages 239-249


Member Price:$27.00
Member Savings:$3.00

A burnup control problem during a reactor core life is considered and solved by making use of a neutron-governing equation that is particularly devised to fit power reactors. Space-dependent parameters are expanded using Walsh functions, and the burnup process is described in terms of the expansion coefficients. By applying the Walsh-function expansion to a newly devised neutron-governing equation, CUMULUS, the criticality condition is established through a more simplified approach, and the system structure of a two-region reactor can be illustrated graphically. Using the above burnup model, an optimal control problem to maximize the average burnup at the end of a core life is considered, and numerical test problems are solved.

Questions or comments about the site? Contact the ANS Webmaster.