American Nuclear Society

Home / Store / Journals / Electronic Articles / Nuclear Science and Engineering / Volume 62 / Number 3

Finite Element Solutions of the Neutron Transport Equation with Applications to Strong Heterogeneities

William R. Martin, James J. Duderstadt

Nuclear Science and Engineering

Volume 62 / Number 3 / March 1977 / Pages 371-390


Member Price:$27.00
Member Savings:$3.00

The Galerkin formulation of the finite element method is applied in space and angle to the equivalent integral law, or weak form, of the first-order neutron transport equation. The existence of a unique solution to the resultant system of algebraic equations is demonstrated using the positivity of the transport operator. Numerical results are given for the one-dimensional plane geometry application, including comparisons with the one-dimensional discrete ordinates code ANISN. A problem with strong heterogeneities is considered, and the use of discontinuous angular and spatial finite elements is shown to result in a marked improvement in the results. The success of the discontinuous elements is examined and it is seen that the discontinuous angular elements effectively match the analytical discontinuity in the angular flux at µ = 0 for plane geometry. Also, the use of discontinuous spatial elements is shown to result in treating continuity of the angular flux at an interface as a natural interface condition in the direction of neutron travel.

Questions or comments about the site? Contact the ANS Webmaster.