American Nuclear Society
Home

Home / Store / Journals / Electronic Articles / Nuclear Science and Engineering / Volume 145 / Number 3 / Pages 376-389

Using NJOY99 and MCNP4B2 to Estimate the Radiation Damage Displacements per Atom per Second in Steel Within the Boiling Water Reactor Core Shroud and Vessel Wall from Reactor-Grade Mixed-Oxide/Uranium Oxide Fuel for the Nuclear Power Plant at Laguna Verde, Veracruz, Mexico

Lisa Vickers

Nuclear Science and Engineering / Volume 145 / Number 3 / Pages 376-389

November 2003

Format:

Price:$30.00
Member Price:$27.00
Member Savings:$3.00

The government of Mexico has expressed interest in utilizing the Laguna Verde boiling water reactor (BWR) nuclear power plant for the disposition of reprocessed spent uranium oxide (UOX) fuel in the form of reactor-grade mixed-oxide (MOX) fuel. MOX fuel would replace spent UOX fuel as a fraction in the core from 18 to 30% depending on the fuel loading cycle. MOX fuel is expected to increase the neutron fluence, flux, fuel centerline temperature, reactor core pressure, and yield higher energy neutrons.

There is concern that a core with a fraction of MOX fuel (i.e., increased 239Pu wt%) would increase the radiation damage displacements per atom per second (dpa-s-1) in steel within the core shroud and vessel wall as compared to only conventional, enriched UOX fuel in the core. The evaluation of radiation damage within the core shroud and vessel wall is a concern because of the potentially adverse affect to personnel and public safety, environment, and operating life of the reactor.

The primary uniqueness of this paper is the computation of radiation damage (dpa-s-1) using NJOY99-processed cross sections for steel within the core shroud and vessel wall. Specifically, the unique radiation damage results are several orders of magnitude greater than results of previous works. In addition, the conclusion of this paper was that the addition of the maximum fraction of one-third MOX fuel to the LV1 BWR core did significantly increase the radiation damage in steel within the core shroud and vessel wall such that without mitigation of radiation damage by periodic thermal annealing or reduction in operating parameters such as neutron fluence, core temperature, and pressure, it posed a potentially adverse affect to the personnel and public safety, environment, and operating life of the reactor.

Customers who purchased this article also purchased the following:

 
 
 
Questions or comments about the site? Contact the ANS Webmaster.
advertisement