American Nuclear Society
Home

Home / Store / Journals / Electronic Articles / Fusion Science and Technology / Volume 1 / Number 1 / Pages 137-159

Performance and Economics Analysis of Several Laser Fusion Breeder Fueled Electricity Generation Systems

D. H. Berwald, J. A. Maniscalco

Fusion Science and Technology / Volume 1 / Number 1 / Pages 137-159

January 1981

Format:

Price:$30.00
Member Price:$27.00
Member Savings:$3.00

An analysis of the potential performance and economic characteristics of several laser fusion breeder reactor (i.e., fusion-fission hybrid) fueled electricity generation systems has been performed. Fusion breeders resulting from several recent conceptual design studies are considered. These are distinguished from one another by the utilization of one of several generic breeder blanket options including a uranium fast fission blanket, a thorium fast fission blanket, a uranium-thorium fast fission blanket, and a thorium-suppressed fission blanket (first time introduced). On the fission side of the system, light water reactors (LWRs), which primarily burn 233U (but also some plutonium), were considered. The fission fuel cycle characteristics and relative proliferation resistance of the various symbiotic electricity generation systems are examined. The results of the economic analysis indicate that systems utilizing LWRs and any of the four breeder blanket concepts can produce electricity for ∼25 to 35% above the cost of electricity produced by a new LWR operating on the current once-through fuel cycle. The laser fusion breeders are predicted to become competitive (as an LWR fuel source) with conventional mined sources of U3O8 when the price of U3O8 reaches about $300/kg (1980 dollars). The results suggest that fusion breeders could supply most or all of our fissile fuel makeup requirements within ∼20 yr after commercial introduction (possibly in 2010) and have nearly unlimited capabilities to support a growing system of LWRs or advanced converter reactors.

 
 
 
Questions or comments about the site? Contact the ANS Webmaster.
advertisement