American Nuclear Society

Home / Store / Journals / Electronic Articles / Fusion Science and Technology / Volume 53 / Number 1 / Pages 88-96

Identification of Fast Particle Triggered Modes by Means of Correlation Electron Cyclotron Emission on Tore Supra

M. Goniche, G. T. A. Huysmans, F. Turco, P. Maget, J. L. Ségui, J. F. Artaud, G. Giruzzi, F. Imbeaux, P. Lotte, D. Mazon, D. Molina, V. S. Udintsev

Fusion Science and Technology / Volume 53 / Number 1 / Pages 88-96

January 2008


Member Price:$27.00
Member Savings:$3.00

Low-frequency (5- to 20-kHz) and high-frequency (40- to 200-kHz) modes are studied during radio-frequency heating experiments on the Tore Supra tokamak by means of correlation electron cyclotron emission. High-frequency modes are detected when the plasma is heated by ion cyclotron range of frequency waves in the minority D(H) heating scheme in combination with lower hybrid current drive (LHCD) producing a flat or slightly reversed q-profile. They are identified as Alfvén cascade modes. When this mode is triggered, fast ion losses (<20%) are detected from the neutron emission rate, and an additional heat load on plasma-facing components can be measured by an infrared camera when the fast ion energy is sufficiently large. Low-frequency modes are commonly triggered during LHCD experiments performed at low loop voltage. This mode can be observed with moderate lower hybrid power when the q-profile is monotonic or at higher power when the q-profile is flat in the core (r/a < 0.2) or reversed. It is identified, in most cases, as an electron fishbone-like mode. These modes can be stabilized by a slight modification of the q-profile provided by an increase of lower hybrid power or by a small addition of electron cyclotron current device.

Questions or comments about the site? Contact the ANS Webmaster.