American Nuclear Society
Home

Home / Store / Journals / Electronic Articles / Fusion Science and Technology / Volume 50 / Number 1 / Pages 120-125

Thermodynamic Properties of High-Temperature Weakly Nonideal Flinabe (LiF-NaF-BeF2) Gas

Mofreh R. Zaghloul

Fusion Science and Technology / Volume 50 / Number 1 / Pages 120-125

July 2006

Format:

Price:$30.00
Member Price:$27.00
Member Savings:$3.00

The set of thermodynamic properties of high-temperature, weakly nonideal Flinabe (LiF-NaF-BeF2) gas is calculated and presented. High-temperature Flinabe gases (plasmas) appear in the inertial fusion energy chamber over a wide range of temperatures and pressures due to the absorption of X-rays and debris, emitted from the target microexplosion, within a very thin surface layer of the Flinabe liquid wall. The equation-of-state (EOS) and ionization equilibrium data of the resulting high-temperature gas were computed and are presented in another paper. In this paper, the set of thermodynamic properties (specific enthalpy, specific heats, adiabatic exponent, and sound speed) that are required, in conjunction with the Flinabe EOS, to perform gas dynamics calculations and the required assessments of many research and development issues in nuclear fusion is modeled and computed consistently with the previously presented EOS and ionization equilibrium data. This set of Flinabe thermodynamic properties is missed in the literature, and the need to model and estimate these properties seems to be immediate rather than justifiable. Computational results for Flinabe thermodynamic properties are presented and discussed. These properties have been presented as a set of isobars that have been validated by obtaining the limiting conditions at very high temperatures for a fully dissociated/fully ionized gas.

 
 
 
Questions or comments about the site? Contact the ANS Webmaster.
advertisement