American Nuclear Society
Home

Home / Store / Journals / Electronic Articles / Fusion Science and Technology / Volume 36 / Number 3 / Pages 346-355

Thermal Control of Cryogenic Cylindrical Hohlraums for Indirect-Drive Inertial Confinement Fusion

Jorge J. Sanchez, Warren H. Giedt

Fusion Science and Technology / Volume 36 / Number 3 / Pages 346-355

November 1999

Format:

Price:$30.00
Member Price:$27.00
Member Savings:$3.00

A study is conducted on cooling and controlling the thickness of a frozen layer of deuterium and tritium (D-T) on the inner surface of a capsule mounted in a cylindrical hohlraum. Cooling is required to remove the heat released during tritium decay. The layer thickness must be uniform, which requires that the heat flow from the layer into the capsule wall be spherically symmetric. It is shown that this requirement can be satisfied by controlling the temperature rise along the hohlraum wall from the ends to the midplane. The optimum temperature rise depends primarily on the D-T fuel charge and the thermal conductivity of the gas filling the hohlraum. To ensure a layer thickness variation of less than ±0.4 m in a plastic capsule, the temperature rise along the hohlraum wall must be controlled to an accuracy of about ±3.0 mK. However, as the thermal conductivity of the capsule wall increases to metallic material values, the required accuracy of the hohlraum wall temperature rise decreases to ±15 mK.

 
 
 
Questions or comments about the site? Contact the ANS Webmaster.
advertisement