The Energy Multiplier Module (EM2) is a helium-cooled fast reactor with a core outlet temperature of 850°C. It is designed as a modular, grid-capable power source with a net unit output of 265 MWe. The reactor employs a convert-and-burn core design that converts fertile isotopes to fissile and burns them in situ over a 30-year core life. The reactor is sited in a below-grade sealed containment. It uses passive safety methods for heat removal and reactivity control to protect the integrity of the fuel, reactor vessel, and containment. The plant also incorporates a below-grade, passively cooled spent fuel storage facility with capacity for 60 years of full-power operation. EM2 employs a direct closed-cycle gas turbine power conversion unit (PCU) with an organic Rankine bottoming cycle for 53% net power conversion efficiency assuming evaporative cooling. The high-power conversion efficiency and long-burn fuel cycle reduce the electricity cost by 35% when compared with the conventional light water reactor.

The conceptual design has been conducted for the EM2 plant with focus on the reactor, fuel, and safety system designs. A detailed model of the passive direct reactor auxiliary cooling system was created to demonstrate functionality for selected design-basis accidents. The bench-scale fuel development campaign demonstrated high-quality uranium carbide pellet fabrication as well as β-SiC composite cladding and SiC-joining technologies. Irradiation tests of reactor materials are also being conducted. The PCU variable-speed generator mechanical design was validated with operational testing of its novel rotor at speeds >13 000 rpm. The design of the turbo-compressor with active magnetic bearings continues. A large cost database and financial model have been constructed for use as a key driver for the design to be economically competitive with competing generating technologies after 2030.