American Nuclear Society

Home / Publications / Journals / Nuclear Technology / Volume 196 / Number 3

Core Melt Stabilization Concepts for Existing and Future LWRs and Associated Research and Development Needs

Manfred Fischer, Sevostian V. Bechta, Vladimir V. Bezlepkin, Ryoichi Hamazaki, Alexei Miassoedov

Nuclear Technology / Volume 196 / Number 3 / December 2016 / Pages 524-537

Technical Paper /

First Online Publication:October 26, 2016
Updated:December 7, 2016

In the event of a severe accident in a nuclear power plant with the core melting, the stabilization of the molten corium is an important mitigation issue, as it can avoid late containment failure caused by basemat penetration, overpressure, or severe damage to internal structures. The related failure modes may result in significant long-term radiological consequences and related high costs.

Because of this, the licensing frameworks of several countries now include a requirement to implement mitigative core melt stabilization measures. This applies not only to new builds but also to existing light water reactors.

The paper gives an overview of the ex-vessel core melt stabilization strategies developed during the last decades. These strategies are based on a variety of physical principles, like melt fragmentation in a deep water pool or during the molten core–concrete interaction with top flooding, water injection from the bottom (COMET), and retention in an outside-cooled crucible structure.

This overview covers the physical background and functional principles of these concepts, as well as their validation status and, if applicable, the remaining open issues and research and development needs. For the concepts based on melt retention inside a cooled crucible that have reached sufficient maturity to be implemented in current Generation III+ designs, like the VVER-1000/1200 and the European Pressurized Water Reactor, more detailed descriptions are provided, which include key aspects of the related technical realization.

The paper is compiled using contributions from the main developers of the individual concepts.

Questions or comments about the site? Contact the ANS Webmaster.