American Nuclear Society
Home

Home / Publications / Journals / Nuclear Technology / Volume 156 / Number 1 / Pages 99-123

A Subcritical, Helium-Cooled Fast Reactor for the Transmutation of Spent Nuclear Fuel

W. M. Stacey, Z. Abbasi, C. J. Boyd, A. H. Bridges, E. A. Burgett, M. W. Cymbor, S. W. Fowler, A. T. Jones, R. S. Kelm, B. J. Kern, D. B. Lassiter, J. A. Maddox, W. B. Murphy, H. Park, J. M. Pounders, J. R. Preston

Nuclear Technology / Volume 156 / Number 1 / October 2006 / Pages 99-123

Technical Paper / Radioactive Waste Management and Disposal

A design concept and supporting analysis are presented for a He-cooled fast reactor for the transmutation of spent nuclear fuel. Coated transuranic (TRU) fuel particles in a SiC matrix are used. The reactor operates subcritical (k 0.95), with a tokamak D-T fusion neutron source, to achieve >90% TRU burnup in repeated five-batch fuel cycles, fissions 1.1 tonnes/full-power year, and produces 700 MW(electric) net electrical power. The reactor design is based on nuclear, fuels, materials, and separations technologies being developed in the Generation-IV, Next Generation Nuclear Plant, and Advanced Fuel Cycle Initiative programs and similar international programs, and the fusion neutron source is based on the physics and technology supporting the ITER design.

 
Questions or comments about the site? Contact the ANS Webmaster.
advertisement