Driving forces of passive cooling systems of advanced reactor containments are substantially weaker than those brought in by active systems of operating power plants. This fact along with the new geometries being used suggest the need either to develop new reliable simulation techniques or to adapt and validate traditional approaches. Suitability of the heat-mass transfer analogy for this purpose is investigated based on previous authors' experience. Major analogy drawbacks are identified and overcome by supplementing it with analytically derived factors. By comparing against experimental data available, the heat-mass transfer analogy is demonstrated to be a sound, configuration-independent, and accurate-enough theoretical approximation.