The results of chemical and radiochemical analyses of the primary circuit coolant liquid, obtained between 1995 and 1999 at the four VVER-type blocks of the Paks (Hungary) nuclear power station, are assessed. A model has been developed regarding the pressure vessel with its auxiliary parts plus the fuel elements as the zone, with the six steam generators as one single unit. The stream from the steam generator is split, with its larger part returning to the zone through the main circulating pump and the smaller one passing through the purifier column. Based on this flowchart, the formation kinetics of corrosion products and of radioactive substances are evaluated. Correlation analysis is applied to reveal any eventual interdependence of the processes, whereas the range-per-scatter (R/S) method is used to characterize the random or deterministic nature of a process. The evaluation of the t limits of the kinetic equations enables one to conclude that (a) the total amount of corrosion products per element during one cycle is almost always <15 kg and (b) the zone acts as a highly efficient filter with an efficiency of ~1. The R/S results show that the fluctuations in the concentrations of the corrosion products are persistent; this finding indicates that random effects play here little if any role and that the processes in the coolant are under control. Correlation analyses show that the variations of the concentrations are practically uncorrelated and that the processes are independent of each other.