The High Average Power Laser (HAPL) program is focusing on the development of laser IFE power plants based on lasers, direct-drive targets and dry wall chambers. One key issue is the survival of the chamber wall under the ion threat spectra (representing ~25% of the yield energy). The possibility of steering the ions away from the chamber to specially-designed dump chambers using magnetic intervention is being investigated. This brings up the intriguing possibility of utilizing a liquid wall to accommodate the ion fluxes in the dump chamber provided the right measures are taken to prevent the liquid from contaminating the main chamber. This paper covers the initial assessment of different magnetic configurations for a laser IFE chamber. Their key characteristics are described; results of the supporting design analyses are summarized; and the major findings and issues are highlighted.