The environment close to the chamber of heavy ion inertial fusion energy reactors imposes severe constraints on magnets used for final focusing magnets. Space is at a premium, requiring close proximity of adjacent magnets, making magnet integration imperative. In addition, the high radiation flux imposes stringent shielding requirements. In this paper, the options for final focusing magnet topologies are described. Implications of using both high-temperature superconductors and conventional low-temperature superconductors are investigated. The use of high-temperature superconducting materials may offer an attractive, although speculative, opportunity for a fundamentally different approach to magnet construction, leading to either lower cost or reduced maintenance.