The use of a liquid-metal (LM) plasma-facing component (LM-PFC) in fusion reactor designs has some advantages as well as some disadvantages as compared to traditional designs that use a solid plasma-facing wall. Neutronics analysis of these potential LM-PFC concepts is important in order to ensure that radiation limits are met and that system performance meets expectations.

A three-dimensional (3-D) neutronics analysis parametric study considering four LM first-wall (FW) candidates, (PbLi, Li, Sn, and SnLi) was performed with a thin (2.51-cm) LM-PFC design. The 3-D neutronics study used a fusion reactor based on the Fusion Energy Systems Study (FESS) Fusion Nuclear Science Facility (FNSF) (FESS-FNSF) that served as the baseline for comparison. FESS-FNSF is a deuterium-tritium–fueled tokamak with 518 MW of fusion power. A partially homogenized 3-D computer-aided-design model of the LM-PFC FNSF design was analyzed using the DAG-MCNP5 transport code.

The results show that all candidate LM designs are acceptable with 4% to 13% increases in the tritium breeding ratio compared to the baseline case. The peak displacements per atom at the FW decrease 2% to 15%. For all four LM designs examined, the magnet heating and fast neutron fluence are well below acceptable limits. Overall, the Li LM design is the best candidate from a neutronics perspective.